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Raman spectral imaging

• Used for structural fingerprint for the identification of molecules

Raman Shift : 



Applications of Raman Spectroscopy

1. Pharmaceuticals and Cosmetics – compound distribution in tablets, contaminant detection

2. Geology and Mineralogy – mineral and phase distribution in rock sections

3. Semiconductors – Purity, alloy composition and superlattice structures

4. Life Sciences – Characterization of bio-molecules and medical diagnosis

5. Carbon Materials – Purity and electrical properties of carbon nanotubes



Let’s see its impact on medical diagnostics

The presence or absence of certain spectral bands when 

Raman imaging is done on biological biopsy samples 

plays a cardinal role in cancer detection.

However, paraffin is commonly used to preserve samples 

from decay, but has an intense Raman signature that 

prevents the study of the underlying tissue.

In vitro Raman analysis can be done on frozen or 

dewaxed paraffin embedded biopsies.

Any attempt to perform a chemical dewaxing on biopsy 

tissue can catastrophically alter its signature spectrum!



A few drawbacks..

• High sample acquisition time

1. Higher resolution images

2. High desired spectral quality

3. Some materials have extremely low Raman scattering properties

• Raman signal is weak

Only around 1 in every 1 million photons is Raman scattered 

(Ref : http://spie.org/newsroom/combine-and-conquer)

Cost-effective CCD detectors are inefficient : have inherent dark noise, optic responses.

Shot noise from fluorescence may further reduce SNR

1. More scans of the sample

2. Longer exposure time (might destroy sample)

3. Higher sample concentration

http://spie.org/newsroom/combine-and-conquer


Our innovation…Compressed Sensing

Given Raman shifts for only a fraction of the entire sample, we reconstruct the Raman 

shifts for the missing pixels using information from the spectra of the randomly chosen 

pixels



Advantages

Sampling rate : A sampling rate of 50% will require only half of the original acquisition time

• Can be used for obtaining higher spectral quality for the recorded fraction of pixels

• Complete reconstruction done in software. No expensive hardware like coded apertures 

required 

(Ref : Colored Coded Aperture Design by Concentration of Measure in Compressive 

Spectral Imaging –Arguello H. and Gonzalo R.)

• Random sampling : No complicated sampling heuristic

• Lesser scans help to preserve sample integrity over time

• Denoising of the input image



Proof-of-concept : Inpainting

Inpainting is the process of reconstructing lost or deteriorated parts of images and videos

It is generally used for :

• Removing red-eye, datestamp from photographs

• Replacing corrupted pixels lost in transmission

• Removing logos in videos

1. Structural inpainting 

2. Textural inpainting



Revisting our AIP friend : CASSI

Mapping down the entire 3D spectral datacube to several 2D snapshots by means of 

dispersive prism induced wavelength dependent shifts and coupled with modulated binary 

masks



Problem Statement

Given an image of m x n x L, where, for only a fraction, f of the m x n pixels, the Raman 

spectra is recorded, for all the given N channels, 

Our goal is to reconstruct the entire image of m x n x L modeling the problem as a form 

of inpainting, given the undersampled image either by random subsampling or structural 

subsampling. We demonstrate two approaches for solving this problem taking advantage 

of the inherent sparsity of natural images :-

1. Using Non-Negative Matrix Factorization (NMF) or Non-Negative Sparse Coding (NNSC)

2. Using a Gaussian mixture model



Problem Statement continued…

Further, given an image of m x n x L , where, for only a fraction f or complete 

measurement of the m x n pixels, the Raman spectra is recorded, for all the given N 

channels, (typically for a paraffin preserved tissue sample of interest)

Modeling the problem as a form of source separation, given one of the component signal 

basis vectors, we try and reconstruct the unknown component. We demonstrate our 

previous approach utilising Non-Negative Matrix Factorization (NMF) or Non-Negative 

Sparse Coding (NNSC)



NMF & NNSC

Given matrix V, V = WH, subject to vi >= 0, wi >=0, hi >=0

Usually, NMF finds applications in fields of astronomy, computer vision, audio signal 

processing, recommender systems and bioinformatics

NMF

Introducing a sparsity prior for the NMF error minimization function,

minW,H ||V – WH||F + λΣf(Hij), W >= 0, H >= 0
NNSC



Applying NNSC to our problem…

Blind Dictionary Learning : 

• Extract image patches of size psz x psz.

• Let N be the total number of image patches under consideration

• Let L be the total number of channels involved

• Arrange image patches into columns of matrix X [(psz*psz*L) x N] 

• Linear decomposition of X as X ~ AS

• A [(psz*psz*L) x l] represents the dictionary matrix, where each column depicts a feature 

vector

• S  [l x N] represents the coefficients matrix, where each column represents coefficients of  

each basis vector in the input vector



Additional constraints…

NNSC : impose sparsity constraint on S

𝑆𝑖𝑗 ≥ 0 , 𝐴𝑖𝑗 ≥ 0 , 𝐴𝑖 = 1

All elements of A, S should be non-negative. Columns of A should be of unit norm

Typical choice for f : f(s) = |S|

λ balances tradeoff between reconstruction error and sparsity



What is Blind Dictionary Learning?

Static Dictionary Learning : 

• Learn A on a set of representative images.

• Use above A to infer S for given test image

J(S) = 
𝑖
𝑦𝑖 − ሶ𝐴𝑠𝑖

2
+ 𝜆

𝑖𝑗
𝑠𝑖𝑗

Blind Dictionary Learning :

Learn A, S simultaneously on the same image

J(A, S) = 
𝑖
𝑦𝑖 − ሶ𝐴𝑠𝑖

2
+ 𝜆

𝑖𝑗
𝑠𝑖𝑗



Mask for each patch..

Given randomly sampled input image,

• Different patches have different number of missing pixels, i.e., a patch might have   

all pixel spectral values recorded, while another might have over half of them  

missing

• Accounted for by using a mask 𝛷𝑖 for the ith patch

Modified cost function for our problem hence evolves as :

𝐽 𝐴, 𝑆 = 
𝑖
𝑦𝑖 − 𝜙𝑖𝐴𝑠𝑖

2 + 𝜆
𝑖𝑗
𝑠𝑖𝑗

yi – actual image patch vector [ri x 1]

𝛷𝑖 - mask for the image patch [ri x (psz*psz*L)]

Si – column of S [l x 1]

A – dictionary matrix [(psz*psz*L) x l]



Need for different 𝜙𝑖
′𝑠



𝑖

𝑦𝑖 − 𝜙𝑖𝐴𝑠𝑖
2
+ 𝜆

𝑖

𝑠𝑖𝑗 = 𝐽 𝐴, 𝑆

−2𝜙𝑖
𝑡 𝑦𝑖 − 𝜙𝑖𝐴𝑠𝑖 𝑠𝑖

𝑡 = 0

Differentiating wrt A, we get , 



𝑖

𝜙𝑖
𝑇𝑦𝑖𝑠𝑖

𝑡 =

𝑖

𝜙𝑖
𝑡𝜙𝑖𝐴𝑆𝑖𝑠𝑖

𝑡
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𝑖

𝜙𝑖
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𝑡𝑦𝑖𝑠𝑖

𝑡



Learning A, S simultaneously

We update A, S via a stochastic gradient descent algorithm. 

Illustration for using the squared error (Euclidean distance) for minimizing cost between X and AS

A is updated via projected gradient descent, with an adaptive step size

𝐴𝑛+1 = 𝐴𝑛 − 𝜃 

𝑖

𝜙𝑖
𝑡 𝜙𝑖𝐴𝑛𝑠𝑛𝑖 − 𝑋 𝑠𝑛𝑖

𝑡

S is updated via a multiplicative update rule. Mni represents the ith column, 

Mni     =                                               

𝑠 𝑛+1 𝑖 = 𝑠𝑛𝑖0𝑀𝑛𝑖 where ° represents element-wise multiplication

𝜙𝑖𝐴𝑛+1
𝑡𝑦𝑖

𝜙𝑖𝐴𝑛+1
𝑡 𝜙𝑖𝐴𝑛+1 𝑠𝑛𝑖 + 𝜆



Additional constraints…

We are employing Projected Gradient Descent, so

• Any negative entry in A is set to zero

• All columns in A are enforced to be of unit norm

→ To maximize sparsity, we can multiply an arbitrarily large value to elements of A, and 

scale down elements of S by the same factor, which minimizes the overall objective 

function. However, such a value of A is clearly not desirable



Super-resolution a.k.a structural sampling

• Here, the 𝜙𝑖’s are aren’t randomly sampled, and are quite structural in nature

• For a p x p patch, there are only 𝑝2 such matrices possible, much lesser than in the 

previous case of random sampling

• The equation shown on slide 14 will not have full rank, leading to a more difficult 

problem for reconstruction

• Hence, we start off with an initial guess. There are two proposed methods of which we 

leverage the latter

→ Infer a dictionary on a part of the image which shall be used as an initial guess for 

the dictionary to be learnt for the entire image

→ Obtain an estimate of the image using bicubic interpolation. The dictionary 

inferred on the interpolated image is used as a seed for learning the dictionary on 

the given raw undersampled image



Discussion

We see that the RMSE error value increases as the number of pixels sampled strictly 

decreases. We see particularly good preservation of spatial features as well with 

dictionary learning and see convincing results for smooth images.

For images with complex textures, the textures are not faithfully reconstructed.

For the super-resolution problem, we see a superior performance of the 

reconstructed image over the initial interpolated image used as the seed for 

dictionary inference guess.



Moving onto GMMs

Conventional Compressed Sensing  to Statistical Compressed Sensing

• O(klog(n/k)) measurements VS O(k) measurements

• The average error of Gaussian SCS is tightly upper bounded by the best k-term linear 

approximation. The estimator error also has a closed-form formula

However, there are certain restrictions on GMMs so that a good reconstruction is obtained

• The covariance matrix needs to have good eigenvalue decay

• For higher dimensional signals, energy should be concentrated in the first few dimensions

• The Gaussian components should be ‘orthogonal’



Decoding a signal from compressive measurements

Here, 𝑥 ∈ ℝ𝑛 is the signal

𝛷 ∈ ℝ𝑚𝑥 𝑛 is the binary mask (sensing matrix)

𝑦 ∈ ℝ𝑚 is the measured vector

Given a GMM, characterized by                              , 

where N is the number of components,

𝜇𝑖 is the mean of ith component of size n

𝛴𝑖 is the covariance matrix of ith component of size n x n

In this case, we need (𝜙𝛴𝜙𝑡) to be of full rank, and hence in this case, the noise in 

the measurements adds to the rank of this above matrix.



Adapting it to our setting

Now, suppose we are given a set of measurement vectors 𝑦𝑖 ⅈ=1
𝑛 , we seek to reconstruct 

the set of original signals 𝑥𝑖 ⅈ=1
𝑛 as follows :

Using the piecewise linear estimate leveraging the optimal decoder

The above equation holds for estimating a signal x through its measurement vector y given the 

sensing matrix 𝛷 with noise, i.e, 𝑦 = 𝛷𝑥 + 𝑛 using the GMM 

where 𝑧 𝐴 denotes 𝑧𝑇𝐴−1𝑧



Our problem formulation
So, for a given ensemble of signals 𝑥𝑖 ⅈ=1

𝑛 , we seek to minimize the following objective 

function : 

𝐽 𝑥𝑖 ⅈ=1
𝑛 =

𝑖=1

𝑛
𝑦𝑖−𝜙𝑖 𝑥𝑗

2

2𝜎2
+ 𝑥𝑗 − 𝜇𝑗 𝛴𝑗

2
+ log 𝛴𝑗

This is accomplished using the MAP-EM algorithm where :

E-step : 𝑥, ǁ𝑗 = 

M-step :  



Discussion
At a higher sampling rate, the GMMs generally outperform the dictionary learning 

methods, but not quite so in the lower sampling regime as was guaranteed by SCS. 

The reason being that, the initial estimate of the mean and covariance are quite 

important as down the line, they yield the tuned means and variances.

It might be the case that the inferred Gaussian components do not show significant 

eigenvalue decay, and are not ‘orthogonal’ enough to each other. We know that, 

the model selection is accurate in the case of the these high-dimensional signals 

being such that the energy is concentrated in the first few principal dimensions. In 

only such a case, reconstruction with GMMs will work quite well with high-

dimensional signals as in our case even with low sampling ratios. 



Spectral Separation
This follows from the dictionary learning problem wit the only exception being that we 

decompose it into two dictionaries : 𝐴𝜌 and 𝐴𝑠 , corresponding to the paraffin and the 

tissue. So, we look forth to optimizing on the below mentioned objective function, with 

updates exactly the same as for dictionary learning with projected gradient descent with 

adaptive step size: 

where 𝐴𝜌 - paraffin dictionary of size n x k1

𝐴𝑠 - tissue dictionary of size n x k2

𝜆 - tradeoff parameter for sparsity (can be kept different)

𝑠𝑠𝑖 - ith coefficient column for the tissue dictionary of size k1 x 1

𝑠𝑝𝑖 - ith coefficient column for the pure paraffin dictionary of size k2 x 1

𝜙𝑖 - sensing matrix for the ith patch of size m x n 

≥ denotes the element wise non-negativity constraint



Discussion

The spectral separation even with the iterative method doesn’t work quite as well as 

expected, owing to the sample spectra being overwhelmingly paraffin. Some of the skin 

estimate always leaks in into the paraffin component and hence is irrecoverable.

This also has the limitation of obtaining sample and pure paraffin spectra to be on the 

same scale since ad-hoc approaches for identifying peaks for scaling them is not 

generalizable across all such mixture problems.



Results..

• Silicon wafer image (71 X 71 X 201) with different sampling rates of 20%, 50% and 80%

• Silicon wafer image (101 X 101 X 201) with different sampling rates of 20%, 50% and 80%

• Silicon wafer image (41 X 41 X 201) with different sampling rates of 20%, 50% and 80%

• Paraffin

• Si + microcrystals of GaN

• Estimate of skin from paraffin + skin sampe



Future Work

• Implement deep neural networks for the problem of inpainting

• Perform undersampling in the spectral dimension for wavelengths as well



THANK YOU


