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1 Introduction

Compressive imaging has emerged as a flourishing sub-field of signal and image processing in recent times [1].
It involves acquisition of images directly in a compressed format, followed by conversion of the compressive
measurements to the conventional image format typically via efficient convex optimization procedures. These
procedures typically exploit the inherent sparsity or compressibility of many modalities of images in well-
known orthonormal bases such as the wavelet or discrete cosine transform bases [2]. The emphasis of
compressive imaging is on saving acquisition time. The time-intensive acquisition of Raman images, as
well as their inherent smoothness as signals, renders Raman imaging as a potential area for applications of
compressed sensing.

1.1 Raman spectroscopy

Raman spectroscopy is a non-destructive, non-invasive method that can provide important information about
various materials ranging from biological tissues [3] to materials in pharmacy, chemistry or materials science
[4], [5], [6], [7], to art preservation [8]. Moreover, Raman imaging does not require usage of any additional
chemical agents for the acquisition, and provides very high spatial resolution. Raman spectroscopy is also
employed in the field of geology [9] for determining mineral composition of rocks as well as in the field of
semiconductors [10] for probing into their structure and examining the presence of traces of other materials
integrated into it.

The analysis of a sample is based on the investigation of a Raman spectrum that is a recording of
intensities of scattered light. Recorded spectra are usually expressed according to the wavenumber shift
(generally with the unity cm−1) that is the inverse of the wavelength shift between the incident laser light
and the scattered light.

1.1.1 Improving the speed of acquisition

Generally, the Raman signal is very weak (one in one hundred million incident photons). The signal strength
can be very low for some sample types and ‘requires powerful excitation compatible with the sample damage
threshold’ [11]. The absence of powerful enough illumination must be compensated for by significantly
higher acquisition times for Raman spectra, so as to avoid the inherent shot noise which can lower the signal
to noise ratio (SNR). This is particularly the case if the CCD detectors have low efficiency, and higher
efficiency detectors significantly raise the instrument cost. We aim to work towards a compressive Raman
imaging architecture, which involves measuring the spectra at only a subset of the total pixels of the image.
The subset can be chosen randomly or in a structured fashion. In either case, this has the potential to
immediately improve acquisition time. The missing pixels can be filled in, using an application of blind
compressed sensing (BCS) [12] to implement an inpainting procedure.

We also present an alternative approach for the same task using Gaussian Mixture Models under the wide
umbrella of Statistical Compressed Sensing. This branch of CS [13] aims to efficiently sample an ensemble of
signals having accurate reconstruction on average. SCS doesn’t explicitly restrict itself to sparse models, but
works on general Bayesian models. Assuming that the signals follow the distribution f(x), we desire encoder-
decoder pairs (Φ,∆), which minimizes the error

∫
‖x−∆(Φx)‖pf(x)dx where ‖.‖p denotes the p-norm. The

effectiveness of GMMs in describing real signals, along with theoretical guarantees motivates us to leverage
this approach. A reduced number M = O(k) of measurements with the optimal decoder implemented via
linear ltering is signicantly faster than the decoders applied in conventional CS, which require O(Cklog(n/k))
measurements for satisfying the RIP property with A = ΦΨ. The average error of Gaussian SCS is tightly
upper bounded by a constant times the best k-term approximation error with overwhelming probability, the
failure probability being orders of magnitude smaller than that of conventional CS.

1.1.2 Source separation

A Raman spectrum can be seen as a signal composed of peaks or bands for which the positions, intensities,
widths and shapes are informative about the molecular composition and structure of the analyzed sample.
Raman spectroscopy has been widely applied especially for biomedical studies such as human skin charac-
terization [14], cancer [15] and atherosclerosis [16] diagnosis, etc. In vitro Raman analysis are realized on
frozen or dewaxed paraffin embedded biopsies. Paraffin is commonly used to preserve samples from decay,
but has an intense Raman signature that prevents the study of the underlying tissue. A preliminary chemi-
cal dewaxing step, which is not totally efficient and can alter the sample [17], is usually applied to remove
the paraffin. Here, we propose an alternate digital solution to remove the paraffin spectra using dictionary
learning techniques. This is inspired from source separation methods which assume a linear mixing of inde-
pendent sources. However, due to the uorescence emission, a non-linear additive noise is superimposed. The
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spectral resolution introduces a spectral shift on each recorded spectrum, while the thickness imperfections
of the sample section can be expressed as width variations of the Raman peaks.

2 Literature survey

2.1 Improving upon acquisition speed

Imaging spectroscopy involves the sensing of a large amount of spatial information across a multitude of
wavelengths. Conventional approaches to hyperspectral sensing scan adjacent zones of the underlying spectral
scene and merge the results to construct a spectral data cube. Spectrometers based on optical bandpass filters
sequentially scan the scene by tuning the bandpass filters in steps. The disadvantage of these techniques
is that they require scanning a number of zones linearly in proportion to the desired spatial and spectral
resolution and complicated setups. One such architecture to alleviate this problem is compressive coded
aperture snapshot spectral imager (CASSI) [18]. As usual, these utilise the inherent sparsity and their
consequent sparse representation in well-known orthonormal bases. Given the source image f(x, y, λ), it is
modulated by means of a coded aperture T (x, y). It is then modified by a dispersive prism before impinging
on a FPA detector. This induces a wavelength dependent shift in the X direction. The spectral data cube
F of dimensions Nx×Ny ×Nλ is mapped to a 2D snapshot of dimensions (Nx +Nλ− 1)×Ny. Several such
measurements are taken, each time with a different binary code T . Any such acquired snapshot is of the
form : f̃(x, y) =

∑Nλ−1
k=0 f(x − lλ, y, λ)T (x − lλ, y). Adhering to the incoherence principles of CS, different

binary codes are used for each such measurement. Since the entire spectral data cube is not measured, we
get a compression ratio of Nλ : m where m is the number of measurements. The original image can now be
reconstructed using any optimization algorithm, say by a minimization of total variation.

2.2 Source separation

Prior work in this field [19], [20] and [21] has attempted to separate the tissue component of paraffin pre-
served samples to a limited degree of success. This forms a typical example of Blind Source Separation
problem. These earlier works have focused on using linear BSS methods and hence, require several pre-
processing steps to remove the non-linearities from the Raman spectra. These steps involve elimination
of saturated spectra, correction of dark current, detector and optic responses, baseline removal, correction
of peak misalignment and subsequently correction of peak width heterogeneity. Post pre-processing these
generally bank on methods like PCA, ICA in order to determine and filter out the components due to pure
paraffin. The most successful of these approaches include identifying sample points that consist of only pure
paraffin. A PCA of this subspace composed of pure paraffin points yields the signal and noise subspace. It
has been empirically observed that the first three principal components are a good enough approximation
to the pure paraffin spectrum. This is thereafter used in JADE, a variant of ICA on the signal subspace to
obtain four principal components out of which three belong to pure paraffin sources assumed to be mutually
independent and the fourth is an estimate of the global tissue spectrum for the sample. Subsequently, a
Non-negatively Constrained Least Squares approach is used in order to estimate the concentrations of each
of these paraffin sources, which is then subtracted from the entire spectra to yield the tissue-only spectrum.
Other approaches revolve around this basic foundation to provide the tissue-only estimate accounting for
local variations across pixels.

3 Compressed sensing by pixel undersampling

3.1 Dictionary Learning

Let the image of interest be denoted as H, having size Nx×Ny×Nλ, where Nλ is the number of wavelengths.
As per our architecture, the complete spectrum (of Nλ values) will be measured at only a fraction of the
NxNy pixels. No measurements are made at other pixels. Let the acquired incomplete image be denoted as
G. The missing pixels in G need to be estimated via an efficient algorithm. For this purpose, we consider
dividing H (and correspondingly G) into a number of overlapping patches, each of size p × p. Let hi, gi be
the patches in H and G respectively, at location indexed as i, expressed as p2× 1 vectors. Then we have the
following:

gi = Φihi + ηi, (1)

where ηi is the noise vector at location i and Φi is a p2× p2 diagonal sensing matrix such that Φi,jj (the jth

diagonal element in Φi) contains 1 if gij is measured and 0 otherwise. The 0 entries can also be dropped off
to give a compact non-zero measurement vector. If we follow a random sampling pattern, then the sensing
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matrices for every patch will be different. However if the sampling pattern bears more regularity, i.e. if it

measures only every lth pixel (l > 0) in both directions (often termed ‘decimation’), then there will be only
p2 different sensing matrices. In this case, the reconstruction is akin to an image super-resolution problem.
Let n be the total number of patches thus considered. The task now reduces to estimating {hi}ni=1 given
{gi,Φi}ni=1. We now frame this as a BCS problem. For this, we express each patch hi as a sparse linear
combination of columns of a dictionary matrix A of size p2 × K, i.e. hi = Asi where si is a vector of
sparse coefficients. Typical choices of dictionaries would include the wavelet or discrete cosine transform,
since image patches are sparse (or approximately sparse) in these bases. However, given the inherently non-
negative nature of the data, we impose the constraint that both A and si are both element-wise non-negative.
With this in mind, we now seek to minimize the following objective function:

J(A, {si}ni=1) = ‖gi − ΦiAsi‖2 + λ‖si‖1, (2)

such that A � 0,∀isi � 0,

∀j ∈ {1, ...,K}, ‖A.,j‖22 = 1

where λ > 0 is a sparsity-promoting parameter, A.,j is the jth column of A, 0 represents a zero-valued matrix
or vector, and � represents an element-wise ‘greater than’ inequality. This objective function seeks to solve
a compressive version of the popular non-negative sparse coding (NNSC) algorithm [22]. In this work, we
choose K � p2 since a higher K increases the number of degrees of freedom, and the size of most available
Raman spectral images is usually very small.

We implement the minimization of the function in Eqn. 3 using alternating minimization on the dictionary
and sparse codes, starting from a random non-negative dictionary. Each step of the minimization is performed
using projected gradient descent with adaptive step-size. That is, the stepsize of the gradient descent is
adaptively chosen to ensure decrease of the objective function after imposition of all the constraints in Eqn.
3. The procedure is iterated till convergence, which is guaranteed due to the biconvex nature of the objective
function. The algorithm is summarized in Alg. 1. Once the individual patches hi = Asi are reconstructed,
an estimate of H is assembled by sliding window averaging.

3.1.1 Dictionary Inference for Regular Sampling

This problem is equivalent to performing super-resolution on the acquired image. In this case, we do not
initialize A randomly. A much better initial guess is required in this case, because the sensing matrices
for applications such as super-resolution tend to have high coherence with typical dictionaries (due to the
regularity of the sampling patterns). Rather, we first perform bicubic interpolation on the image G to yield
G̃. We then infer the dictionary AG̃ from the patches of G̃ by optimizing the following objective function:

J2(AG̃, {s̃i}
n
i=1) = ‖g̃i −AG̃s̃i‖

2 + λ‖s̃i‖1, (3)

such that AG̃ � 0,∀is̃i � 0,

∀j ∈ {1, ...,K}, ‖AG̃.,j‖
2
2 = 1.

This now acts as an initial guess for inferring the actual dictionary A from H via Eqn. 3.

3.2 Gaussian Mixture Models

SCS with Gaussian models have been shown to have improved performance (bounds) relative to conventional
CS, the signal reconstruction calculated with an optimal decoder ∆ implemented via a fast linear ltering.
SCS with piecewise linear decoders have been widely investigated. Generally, only those Gaussian signals
are considered that show fast eigenvalue decay for the covariance matrix. In this case, we have a linear MAP
decoder which is optimal and enjoys efficient calculation via closed form linear filtering for any Φ. The linear
MAP estimator is given by ∆(Φx) = argmaxxp(x|y) = ΣΦT (ΦΣΦT )−1(Φx) where x ∈ RN is the true signal
with pdf N(0,Σ), the sensing matrix Φ ∈ RM×N with M ≤ N and y ∈ RM is the measured signal such
that y = Φx. Following from the above formulation where G is the provided undersampled version of the
original image H, we dissect it into overlapping patches of size p× p. Here, we provide a different approach
to the task of estimating {hi}ni=1 given {gi,Φi}ni=1. Each patch hi is approximated by a Gaussian component
belonging to the GMM {µi,Σi}Nci=1 where µi is the mean vector of size p2×1 and Σi is the covariance matrix
of size p2 × p2 for the ith component and Nc is the number of components, which is fixed beforehand. The
optimization is now carried out by the means of a MAP-EM algorithm.

Consider a general setting without any additive noise. In order to decode the measured signal y = Φx,
the GMM-based SCS decoder estimates the signal x̃ and selects the Gaussian model j̃ by maximizing the
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Algorithm 1 INFER A,S = {si}ni=1 from G

Require: µ, λ,K, p, n,{Φi}Ni=1, ε, α
1: if G obtained from H by random sampling then
2: A← random(p2Nλ,K)
3: else

Initialize A = AG̃ inferred from G̃
4: end if
5: S ← random(K,n)

Ensure: A � 0 and ‖Aj‖22 = 1∀j ∈ {1, ..,K} and S � 0
6: Aold ← A, Sold ← S
7: J ←

∑n
i=1 ‖gi − ΦiAsi‖2 + λ

∑K
i=1

∑n
j=1 |sij |

8: while ∆J > ε do
9: A← A− µ(

∑n
i=1 Φti(ΦiAsi − gi)sti

10: Set all negative entries of A to 0

Ensure: ‖Aj‖22 = 1 ∀j ∈ {1, ...,K} and A � 0

11: S ← ((ΦiA)tgi)./((ΦiA)t(ΦiA)si + λ)

12: J ′ ←
∑n
i=1 ‖gi − ΦiAsi‖2 + λ

∑K
i=1

∑n
j=1 |sij |

13: if J
′
> J then

14: µ = µ× α (α < 1 is a reduction factor)
15: A← Aold, S ← Sold

16: end if
17: end while

log a-posteriori probability, i.e. (x̃, j̃) = argmax(x,j)f(x|y, µj ,Σj). In order to realise this, we first compute

the piecewise linear MAP estimates x̃j for each of the components and then select the best (MAP) model j̃.

x̃j = ΣjΦ
T (ΦΣjΦ

T + Ση)−1(y − Φµj) + µj

j̃ = argminj‖y − Φx̃j‖2Ση + ‖x̃j − µj‖2Σj + log|Σj |

where ‖z‖A denotes zTA−1z. We provide both flavours of SCS with GMMs on the fly as well as learning
offline on a representative set of images. The latter is achieved by means of training on one-third of the
image, and then reconstructing the rest from an undersampled version of the rest two-thirds of the image. A
much better initial guess is required in the former case, because the initialized mean and covariance matrices
are evolved down the line to yield the signal estimates and hence demand reasonable starting estimates for
{µj ,Σj}Ncj=1 where Nc is the number of components. Rather, we first perform bicubic interpolation on the

image G to yield G̃. We then infer the component {µj ,Σj}Ncj=1 from the patches of G̃ optimizing the following
objective function:

J3({hi}ni=1) = ‖g̃i − Φh̃ij̃‖
2
Ση + ‖h̃ij̃ − µj̃‖

2
Σj̃

+ log|Σj̃ |

where h̃ij̃ = ∆(g̃i) for each patch using piecewise linear estimation as above. We now provide the brief
steps for Maximum a-posteriori Expectation-Maximization algorithm which are carried out in an alternating
fashion until convergence in terms of the objective function or the likelihood of the data given the GMM
parameters. The core steps are :

• E-step : This carries out the piecewise linear estimation for {h̃}ini=1 using {µj ,Σj}Nj=1c utilizing h̃ij̃ =

argminj h̃ij = argmax(hi,j)f(hi|g̃i, µj ,Σj).

• M-step : In this step, the mean and covariance matrices are updated, given the signal estimates
(h̃i, j̃). We utilize the probability of each estimate belonging to a particular Gaussian component
by means of a weight matrix W of size n × Nc. Each entry wij corresponds to the probability of
the ith signal, (i.e. hi) belonging to the jth Gaussian component(characterised by (µj ,Σj). Hence
wij = 1

(2π)
N
2 |Σj |

1
2
exp(− 1

2h
T
i Σ−1

j hi). Correspondingly, for the jth component, we have

µj =
1

Sj

∑
i

wij h̃i, Σj =
1

Sj

∑
i

wij(h̃i − µj)(h̃i − µj)T

where Sj =
∑n
i=1 wij is the sum of probabilities of all signals belonging to the jth Gaussian component.
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3.3 Results

3.4 Dictionary Learning

Figure 1: Top to bottom : 80%, 50%, 20% sampling with RMSE : 0.07405, 0.08940 and 0.14299
respectively. Left to right per row: ground truth, randomly sampled, reconstructed Raman spectral image

and spectral plot of reconstructed pixel of pure silicon of size 41× 41× 226 at 128th spectral band. See
supp. mat. for video results.
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Figure 2: Top to bottom: 80%, 50%, 20% sampling with RMSE : 0.08269, 0.08467 and 0.09388
respectively. Left to right per row: ground truth, randomly sampled, reconstructed image and spectral

plot of reconstructed pixel of pure paraffin of size 51× 51× 208 at 101st spectral band. See supp. mat. for
video results.

Figure 3: Top to bottom: 80%, 50%, 20% sampling with RMSE : 0.2547, 0.2686 and 0.3359
respectively. Left to right per row: ground truth, randomly sampled, reconstructed image and spectral
plot of reconstructed pixel of Si + GaN of size 41× 61× 179 at 82th spectral band. See supp. mat. for

video results.
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Figure 4: Top to bottom : (a) pure silicon of size 101× 101× 226 at 128th spectral band with RMSE :
0.152 (b) pure paraffin of size 51× 51× 208 at 101st spectral band with RMSE : 0.103. Left to right per
row: ground truth, structurally sampled with 4th, , 5th pixel in both directions, reconstructed image and

corresponding spectral plots at s missing pixel. See supp. mat. for video results.

3.5 Gaussian Mixture Models
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Figure 5: Top to bottom : 80%, 50%, 20% sampling with RMSE : 0.067, 0.122 and 0.202 respectively.
Left to right per row: ground truth, randomly sampled, reconstructed Raman spectral image and spectral

plot of reconstructed pixel of pure silicon of size 41× 41× 251 at 128th spectral band. See supp. mat. for
video results.

Figure 6: Top to bottom: 80%, 50%, 20% sampling with RMSE : 0.051, 0.096 and 0.179 respectively.
Left to right per row: ground truth, randomly sampled, reconstructed image and spectral plot of

reconstructed pixel of pure paraffin of size 21× 21× 208 at 101st spectral band. See supp. mat. for video
results.
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Figure 7: Top to bottom: 80%, 50%, 20% sampling with RMSE : 0.011, 0.036 and 0.099 respectively.
Left to right per row: ground truth, randomly sampled, reconstructed image and spectral plot of

reconstructed pixel of pure paraffin of size 21× 21× 208 at 101st spectral band learnt offline. See supp.
mat. for video results.
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Figure 8: Top to bottom: 80%, 50%, 20% sampling with RMSE : 0.147, 0.253 and 0.378 respectively.
Left to right per row: ground truth, randomly sampled, reconstructed image and spectral plot of

reconstructed pixel of Si + GaN of size 21× 21× 89 at 41st spectral band. See supp. mat. for video results.

3.6 Comments

The above method can also be incorporated for pixel undersampling in the spectral dimension, so that the
entire range of wavelengths for a pixel need not be measured. This will further bring down acquisition times
than shown above, with almost no loss of reconstruction quality.

We focus here on approaches related to blind compressed sensing since a set of representative images
for training is difficult to find. We also see above that the GMMs work better than conventional dictionary
learning methods only for higher sampling rates, whereas for lower sampling rates, the conventional approach
generally works better. We know that a good eigenvalue decay for the covariance matrices are required to aid
in better reconstruction. We desire Gaussian components in the GMM to be such that they are orthogonal
to one another, i.e, the principal components should be such that the first principal component of the first
Gaussian is aligned with the last principal component of the last Gaussian and so on. This leads to a better
model selection which is at the heart of this problem. Accurate model selection can be achieved with very low
sampling rates, given that the energy of the signals is concentrated in the first few principal dimensions. But
we are more interested in signal reconstruction, and that works well if the signals are in higher dimensions
and the energy is concentrated in the first few dimensions. GMMs work better in the offline setting due to
more data being available and better tuning of the mean and the variance matrices. Here, as usual, we see
that with lower sampling, the MSE increases for both dictionary learning and GMM approach.

For the problem of super-resolution, we achieve a superior performance of the reconstructed image over
the initial interpolation of the undersampled image, showing that the dictionary inference improves upon
the image significantly.

The training strategy for GMMs is the same as super-resolution, using a bicubic interplolated image for
initial inference phase. In case of lower sampling rates in the data starved situations, the signals might
be assigned to erroneous Gaussian components, which leads to a bad initialization. Both this and super-
resoultion face the same problems in invertibility of a matrix which is almost always not full rank.

4 Spectral Separation

4.1 Dictionary Learning

We can consider both the variants of the complete image of the sample measured as H or the incomplete
undersampled image G is measured. The aim is to recover the underlying spectra os the tissue given the
spectra of the paraffin-preserved problem, which might be coupled with the problem of reconstructing the
spectra at missing points as well. Here again, we divide the image into overlapping patches of size p × p.
Let {hi}ni=1 and {gi}ni=1 of size p2 × a and m × 1 respectively be the patches of G and H vectorised into a
column. Φi is a m× p2 matrix where each row is a one-hot vector consisting of a 1 at the pixel index which
has been measured, i.e, if the (i, j)th pixel corresponds to the kth measurement, then Φk,i(p−1)+j = 1. We
adhere to the random sampling pattern making each Φi a row-subsampled version of the canonical basis.

Now, each hi can be expressed as a sparse linear combination of two dictionary matrices, namely Ap and
As of size p2 ×Kp and p2 ×Ks corresponding to pure paraffin spectra and tissue spectra respectively, viz.
hi = Apsp +Asss where [sp ss] is a concatenated sparse vector of coefficients. In this case, we obtain a pure
paraffin sample by making a complete measurement and leverage the strategy described in 3.1 to get a good
estimate of Ap. Again, we choose Kp � p2 as outlined to minimize the number of degrees of freedom in the
problem. As before, keeping in mind the non-negative nature of the data, we impose constraints for sp, As
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and s being element-wise non-negative. We now seek to minimize the following objective function :

J(As, {spi}ni=1, {ssi}ni=1) = ‖gi − ΦiApspi − ΦiAsssi‖2 + λ1‖spi‖1 + λ2‖ssi‖1, (4)

such that As � 0,∀i(spi � 0, ssi � 0)

∀j ∈ {1, ...,Ks}, ‖As.,j‖22 = 1

where λ1 > 0, λ2 > 0 are sparsity-promoting parameters, As.,j is the jth column of As, 0 represents a zero-
valued matrix or vector, and � represents an element-wise ‘greater than’ inequality. This objective function
seeks to solve a different flavour of the problem stated in 3.1. In this work, we choose Ks � p2 since a higher
Ks increases the number of degrees of freedom, and the size of given Raman spectral sample images is very
small.

We implement the minimization of the function in Eqn. 5 using alternating minimization on the dictionary
and sparse codes, starting from a random non-negative dictionary. Each step of the minimization is performed
using projected gradient descent with adaptive step-size. That is, the stepsize of the gradient descent is
adaptively chosen to ensure decrease of the objective function after imposition of all the constraints in
Eqn. 5. The procedure is iterated till convergence, which is guaranteed due to the biconvex nature of the
objective function. The algorithm is summarized in Alg. 1. Once the dictionary As and coefficients {ssi}ni=1

are inferred, an estimate of the tissue spectrum is obtained by sliding window averaging across patches. Once
an initial estimate of Gs is obtained which comprises of pure tissue spectra, we attempt to iteratively keep
subtracting any paraffin component that might be present in the tissue spectra estimate. Here again, let gsi
represent a vectorised version of corresponding patch of Gs of the same size p × p, We again run the same
optimization problem with the only change in the observed data utilising the same paraffin dictionary Ap :

J(As, {spi}ni=1, {ssi}ni=1) = ‖gsi − ΦiApspi − ΦiAsssi‖2 + λ1‖spi‖1 + λ2‖ssi‖1, (5)

such that As � 0,∀i(spi � 0, ssi � 0)

∀j ∈ {1, ...,Ks}, ‖As.,j‖22 = 1

with the same constraints that had been used to solve 5.

4.2 Results
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Figure 9: Top to bottom: Each of the 7 estimates of the iterative paraffin dewaxing of given tissue sample
of size 21× 21× 208 at 101st spectral band along with their spectral plots. Left to Right : pure paraffin,

estimate of the previous iteration and current reconstructed tissue spectral estimate.

4.3 Comments

The above results do not look too promising given the nature of the sample spectra. The paraffin spectra
overwhelmingly dominates the tissue spectra. In the above case, the iterative process of inferring the tissue
dictionary and corresponding coefficients whiles trying to weed out the pure paraffin component also leads to
some part of the tissue spectra getting absorbed into the pure paraffin component, which can’t be recovered
later. Hence, subsequent iterates have lesser and lesser tissue component, albeit more ’separate’ from the
paraffin component. These are generally obserbed to weaken in magnitude and merge with the baeline after
just a few iterations. Also, some highly intense ’stubborn’ pure paraffin peaks can never be completely
removed. In such a case, increasing the number of paraffin dictionary columns to subtract out more of the
paraffin component also doesn’t seem to help.

We have also tried ad-hoc approaches for the same because the case being that generally, the tissue signal
is weaker. In such a case, when one signal dominates the other, it is generally difficult to perform source
separation. Hence, in this case, we tried to identify the peaks and correspondingly tried to bring the peaks
corresponding to pure paraffin in the paraffin & tissue sample to the same scale as the paraffin peaks in the
pure paraffin sample. This is again achieved by a least squares minimization approach, thereafter which we
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subtract the pure paraffin spectrum from the sample spectra with non-negativity constraints imposed in an
effort to obtain the pure tissue spectra.

5 Future Work

One important line of future work will involve development of such a hardware prototype. The reconstruction
algorithm can also be further improved using deep learning techniques [23] or tensor factorizations [24]. Such
a deep learning framework can also be utilized for the above spectral separation problem.
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