
Centralized vs Decentralized Stochastic Optimization Algorithms

Arijit Pramanik, Deepak Srinath and Hemant Chinchore - Group 5

1 Introduction

Federated learning entails training statistical models di-
rectly over a large number of remote devices using their
local data. These devices individually collect training
samples and compute gradients locally. Due to the grow-
ing computational power of consumer mobile devices
and IoT devices coupled with privacy concerns over
transmitting raw training data, it is becoming increas-
ingly attractive to store data locally and push network
computation to the edge. In contrast, classic ML train-
ing approaches require centralizing the training process
to a local machine or distributing the dataset over dedi-
cated training nodes within large datacenters. The down-
side of this architecture is that the data collected by lo-
cal devices/sensors have to be sent back to the central
cloud servers for processing wherein the trained model
is subsequently communicated back to the devices for
real-time on-device inference.

Federated learning brings in the ability to take advan-
tage of distributed edge resources like consumer devices
to train machine learning models remotely. Edge devices
synchronize with the current model from the server, im-
prove it by learning from local data on device and sum-
marize ”learning” as a small focused update. Only such
model updates, e.g. on-device computed gradients are
sent to the cloud, using encrypted communication, where
they are immediately averaged with other device updates
to improve the global shared model. Other approaches
aim to simultaneously learn distinct device-specific mod-
els via multi-task learning frameworks. Even though fed-
erated learning has found success in numerous applica-
tions such as self-driving cars, smart manufacturing, dig-
ital health and tasks like next-word prediction, it comes
with its own set of challenges. (1) The most important
concern in a federated setting is the privacy of localized
data. Though raw data is never communicated, sensitive
information may still be revealed to a third party/central
server. Organizations or institutions such as hospitals
can also be viewed as devices in the context of feder-
ated learning. However, hospitals operate under strict
privacy practices, and hence may be unwilling to trust
a third party even with only the model updates. Ap-
proaches used to enhance the privacy of federated learn-
ing such as multiparty computation or differential pri-
vacy often cause reduced model performance and system

efficiency. (2) Since thousands of devices are involved in
every training step, the communication costs can be at
par with computation complexity. (3) The devices in-
volved in the training step are heterogeneous in nature
and differ in terms of storage, computational and com-
munication capabilities due to variability in hardware,
network connectivity and power. The associated unreli-
ability of network and these devices might result in only
a handful of them actively participating in an ongoing
training iteration during which any of them may arbi-
trarily drop out. Hence, federated learning should also
be robust to device failures and stragglers. (4) The data
collected by these devices can be statistically heteroge-
neous and may violate frequently used independent and
identically distributed (I.I.D.) assumptions in distributed
optimization which can further complicate the process of
analysis and evaluation of the trained model.

Communication is a key bottleneck in federated net-
works and communication in the network can be slower
than local computation by many orders of magnitude ow-
ing to O(n) communication overhead at each node for n
nodes. Most machine learning frameworks are built on
top of centralized approaches which use a star network
topology like parameter servers and gradient consensus,
wherein a designated node gathers gradients and scatters
the mean gradient values. These approaches introduce a
bottleneck on the central node which is exacerbated in a
federated setting. Such bottlenecks can be circumvented
by taking decentralized approaches with communication
complexity of O(deg(network)) promising asymptotic
linear speedup since a star topology may not always be
available. Even in such decentralized approaches, com-
munication may involve propagation of locally computed
updates across all nodes over several rounds of com-
munication (e.g. AllReduce). Several approaches limit
propagation of such information to a set of immediate
neighbours. The amount of data transmitted can also be
reduced by gradient compression techniques like sparsi-
fication and quantization. Hence we aim to study and an-
alyze the performance of decentralized algorithms over
centralized counterparts in a data-parallel federated set-
ting on various network topologies (e.g. ring, torus) with
different latency and bandwidth guarantees. We also
compare the use of biased and unbiased compression op-
erators along with communication-efficient methods that
can reduce the number of rounds of communication.

1



A special variant of stochastic gradient descent called
parallel stochastic gradient descent (PSGD) is normally
used for distributed machine learning training and sev-
eral variants of this algorithm such as centralized (syn-
chronous SGD with parameter server) and D-PSGD (de-
centralized) - synchronous and asynchronous versions
have been theoretically compared. In a distributed set-
ting, it is important to find the average gradient vector
over n local gradient vectors from (say) n nodes and
usually gossip algorithms are leveraged to find such an
average vector. Several variants of gossip algorithms
scale very well while dealing with compressed commu-
nication. To this end, we also study the state-of-the-art
communication-efficient techniques implemented on top
of D-PSGD.

2 Background

Stochastic Gradient Descent: SGD is a standard algo-
rithm used for machine learning problems. It is an in-
herently serial algorithm that does not take distributed
setting into account. Mini-batch SGD is the natural par-
allelization of SGD in a centralized setting.
Decentralized Communication: The network topology
is often modelled as a graph. Centralized topologies cor-
responding to a star graph pose a significant bottleneck
on the central node in terms of communication latency,
bandwidth and fault tolerance. The master node in a cen-
tralized setting receives (sends) messages from (to) all
workers in each round, Θ(n) in total where n is the num-
ber of nodes. In decentralized topologies, e.g. ring or
torus, the maximal degree of the network is often con-
stant or a slowly growing function in n.
Decentralized Optimization: Each training iteration
in case of centralized optimization starts only when all
nodes have the same global model, e.g. Ring All-
Reduce, whereas in decentralized optimization, since
each node updates its model based on updates only from
neighbors, it is possible that each node has a slightly dif-
ferent model. Recent work [11] shows that decentralized
algorithms (also termed gossip algorithms) can provide
similar convergence guarantees as their centralized coun-
terparts.
Communication Compression: In distributed ML train-
ing, model updates (or gradient vectors) have to be
exchanged between the worker nodes. To reduce the
amount of data to be sent over the network, several gra-
dient compression strategies using quantization [3] and
sparsification ([2]; [19]) are used in practice.
Federated Learning: The canonical federated learn-
ing problem involves learning a single, global statistical
model from data stored on tens to potentially millions of
remote devices. The goal is typically to minimize the fol-

lowing objective function: minwF (w) where F (w) :=∑m
k=1 pkFk(w), where m is the total number of devices,

pk ≥ 0,
∑

k pk = 1 and Fk is the local objective function
for the kth device.

3 Centralized vs Decentralized

Throughout the early Big Data era, most of the system
design was driven by performance, accuracy, resource
usage and usability. But, federated learning introduces a
new requirement of privacy. Privacy and security have al-
ways been considered to be in friction with performance
and usability. Hence, a federated setting might need to
compromise on performance in order to achieve privacy.

In order to understand how much of a compromise
needs to be done in terms of performance and accuracy,
we ran an experiment to compare centralized and decen-
tralized algorithms on CloudLab in an environment com-
posed of 8 Ubuntu 18.04 nodes. CIFAR-10 dataset was
used to train a ResNet-20 model. The centralized algo-
rithm made use of a parameter server while decentralized
approach entails use of the D-PSGD algorithm. Further,
Ring AllReduce was used as it uses a centralized syn-
chronization model in a decentralized topology, wherein
all nodes need not be directly connected.

Decentralized Stochastic Gradient Descent (D-
PSGD)[11] is an algorithm where each worker owns a
local copy of the model. For each iteration, each worker
computes the stochastic gradient and averages its local
model with its neighbors. The centralized algorithm
utilizes a parameter server that receives the gradients
from all the other nodes, calculates the average gradient
and broadcasts it back to the workers. In order to achieve
the functionality of a parameter server, we make use
of gather and scatter approach. One master node is
used to gather all the gradients and again scatter them
to all the worker nodes. Ring-AllReduce is specifically
used as the gradients for each iteration is passed onto
all the devices in an network bandwidth-optimized way.
While in D-PSGD, a node just distributes its gradient to
its immediate neighbors. Fig 1 shows how gradients are
distributed in each of the approaches mentioned above.
In the case of a parameter server, the gradients are all
pushed towards the central node. Hence, we expect
the central node to have more traffic compared to other
nodes. In case of D-PSGD each node sends the gradients
to its neighbor as well as receives gradients from its
neighbors and hence each node has same amount of
traffic going through it. But, it might be twice the size of
a gradient. Finally, Ring AllReduce sends one gradient
to a neighbor and receives a gradient from another
neighbor. Hence, each node will have similar network
traffic and the amount of data sent (or received) will be

2



Figure 1: Gradient distribution in parameter-server, D-
PSGD and Ring AllReduce

equal to the size of a gradient vector.

3.0.1 Network Usage

The network usage was the first parameter that was mea-
sured as this is crucial in a federated learning setting. The
network usage of only those nodes that might be a bottle-
neck in each algorithm was measured. In the case of cen-
tralized parameter server, the master node where the gra-
dients are accumulated would be the potential bottleneck
as all the workers send gradients and receive updated gra-
dients from it. In the case of D-PSGD, each node would
have similar network usage. Similarly, Ring AllReduce
would also have similar network usage across all its
nodes. One of the main observations from the descrip-
tion of these algorithms would be that the network usage
would be twice for each node in D-PSGD compared to
that of AllReduce in DistributedDataParallel
setting. But, this communication would be constant and
is independent of the number of nodes. The parameter
server in centralized algorithm can be considered to be
a function of the number of nodes and as the number
of nodes increase, more number of gradients would be
passed to the parameter server.

Figure 2 shows the network usage as experimented
on the Cloudlab environment. Some of the major take-
aways from the graph are that the Ring AllReduce has
the least network usage. As expected, D-PSGD has
twice the number of gradients transferred across when
compared to the Ring AllReduce. Parameter server has
around 15MB of data transfer, which can be attributed
to 7 worker nodes sending and receiving gradients. But,
this amount of data might increase if the number of nodes
participating in training increases. Similar reasoning can
be extended to D-PSGD as well as Ring AllReduce. The
other observation is that in each of the algorithms, the
network usage hits 0. This shows that there is no com-
plete overlap of communication and computation. From
Fig 2 we can also see that the time taken to run 20 epochs
is more in the case of parameter server while D-PSGD
and Ring AllReduce have similar completion times.

3.0.2 Statistical efficiency

The next concern when comparing centralized and de-
centralized algorithms is accuracy. As for each iteration,

Figure 2: Maximum network usage in parameter-server,
D-PSGD and Ring AllReduce

Figure 3: Accuracy vs Epoch and Accuracy vs Time

the amount of gradient data exchanged is very limited
for D-PSGD when compared to AllReduce and parame-
ter server. Looking at Fig (3), we see that for 20 epoch,
all the algorithms have very similar accuracies. Further,
the time taken for each epoch is significantly lower when
compared to the parameter server approach.

From this simple experiment, we conclude that the de-
centralized algorithm achieves accuracy comparable to
the centralized approach and makes efficient utilization
of the resources. These results reinforce our assumption
that decentralized algorithms can achieve privacy, as well
as perform at par with centralized algorithms. Hence, de-
centralized algorithms can be used in federated settings
that do not want to rely on a centralized server.

3.1 Mini-batch SGD variants
Parallel Stochastic Gradient Descent (PSGD) [25] di-
vides a dataset into small batches across machines where
gradients are computed for the entire mini-batch and
synchronized across machines. After averaging gradi-
ents and batch norm synchronization, model parame-
ters are updated accordingly. For centralized (C-PSGD),
gradients are synchronized across all machines (a fully-
connected or master-worker parameter server topology).
Elastic Averaging (EA-SGD) [23] maintains parameters
local to workers and global center variables, focusing on
reducing communication between master and workers.

3



Figure 4: Different gradient compression schemes [22]

The elasticity parameter ensures that workers don’t fall
into local optima farther away from center variables.

Decentralized PSGD (D-PSGD) synchronizes gradi-
ents only among neighbors leading to idle time in each
iteration for some workers while waiting for others to
compute and send gradients. Asynchronous D-PSGD
(AD-PSGD) [12] eliminates the need to wait at indi-
vidual worker nodes, by maintaining and updating each
worker’s local model and synchronizing with local mod-
els of neighbouring workers. This might lead to the
use of stale models from slow workers but speeds up
training in the face of stragglers and slow networks as
evident in today’s datacenters. Inspired from Quan-
tized SGD (QSGD) [1], we show various compression
schemes used in conjunction with SGD in Fig 4. We
study Difference Compression D-PSGD (DCD-PSGD)
and Extrapolation Compression D-PSGD (ECD-PSGD)
[21] which quantize the difference and extrapolation be-
tween the last two local models on each worker respec-
tively. DCD-PSGD offers a slightly better convergence
rate when the data variation among nodes is very large,
while ECD-PSGD is more robust to aggressive quanti-
zation. ChocoSGD [7] supports all biased and unbiased
compression operators shown in Fig 4 and is a provably-
converging gossip algorithm for the distributed average
consensus problem, critical for the federated setting.

Protocols described above entail each node sending
updates to all of its neighbours (”push”) and receiving
an update from each such neighbor (”pull”), and hence
called ”push-pull” algorithms. Such topologies are typ-
ically undirected graphs with a symmetric, row stochas-
tic mixing matrix (row entries summing to 1) where
each non-zero entry signifies that nodes with the cor-
responding row index and column index are connected.
Stochastic Gradient Push (SGP) [4] works for undi-
rected, time-varying graphs with one-directional com-
munication wherein each node broadcasts updates and
PUSHSUM weights to its out-neighbors for updating the
model. Its variant, Synchronous Overlap SGP allows for
computation-communication overlap with performance
at par with AD-PSGD.

Type CPUs L1 L2 LLC
c220g1 40 32 KB 256 KB 25600 KB

Table 1: Cloudlab experiment machine configuration

4 Evaluation

4.1 Experimental setup
We experiment with some simple topologies as shown
in Fig 5 6, 7 and 8 to simulate a network of feder-
ated devices. We use the epsilon dataset [18] to evalu-
ate a simple ML classification task of predicting labels.
The dataset consists of 40,000 examples each comprising
2000 features.

We use a Cloudlab machine as seen in Table 1 to eval-
uate a simple ring topology of 40 devices each pinned
to a single CPU core. We observe how the training er-
ror and loss function evolve over time with number of
epochs and transmitted bits. We measure communication
in terms of bytes transmitted, by accounting for the phys-
ical size of the numpy matrices that are sent/fetched. We
use the cross entropy loss function from logistic regres-
sion to measure loss and measure training error as the
number of incorrect predictions. We use a variety of
learning techniques and tune such hyper-parameters fol-
lowing related papers and simple grid search. We show
results primarily for training error as we obtain similar
results for training loss. We also plot training error and
loss vs time but this is not an accurate measure of train-
ing time since there is no physical communication among
devices which can be affected by heterogeneous network
bandwidth and can be a bottleneck compared to the cur-
rent simulation via a matrix multiplication. We expect
similar results on any physical cluster as well. Please
refer to our repository for more details.

4.2 Comparing popular SGD variants
We compare PSGD on a fully-connected topology (C-
PSGD), synchronous and asynchronous versions of EA-
SGD with momentum (EAMSGD-sync and EAMSGD-
async), vanilla D-PSGD, momentum variant of SGP and
AD-PSGD. For EAMSGD-async, we synchronize local
worker gradients with the central parameter server ev-
ery 4 mini-batch iterations. From Fig 9 and 21, we ob-
serve centralized algorithms communicate much more
bytes than decentralized ones for very similar accura-
cies (i.e. greater X-values for the same Y-value). SGP
communicates both gradients and PUSHSUM weights
leading to more bytes transmitted. EAMSGD-async also
achieves similar accuracy for lesser bytes transmitted
than EAMSGD-sync and C-PSGD. The final accuracy
obtained by these algorithms is presented in Table 2.

4

https://github.com/theUltraMarine19/ChocoSGD


Figure 5: Ring topol-
ogy

Figure 6: Torus topol-
ogy

Figure 7: Fully-
connected topology

Figure 8: General
topology

Figure 9: Training error vs bytes
communicated for different vari-
ants of SGD

Figure 10: Training error vs epoch
(1000 iterations) for different vari-
ants of SGD

Figure 11: Training error vs bytes
communicated for 4-bit gradient
quantization

Algorithm Plain 4-bit Top 1% Random
qnt. 1%

C-PSGD 89.73 89.70 87.61 86.39
EAMSGD 89.24 - - -

(sync)
EAMSGD 89.12 - - -

(async)
D-PSGD 89.69 89.64 87.59 86.23

SGP 89.86 89.71 89.54 88.96
AD-PSGD 89.60 - 51.02 -
ChocoSGD - 89.68 89.65 89.65
DCD-PSGD - 87.99 - 54.21
ECD-PSGD - 49.80 - 50.19

Table 2: Accuracy(%) for SGD variants across different
compression schemes (qnt. implies quantization)

Overall training error and loss decreases with time as
shown in Fig 23 and 24. AD-PSGD completes train-
ing in almost same time as D-PSGD since our simulation
doesn’t comprise any stragglers or communication over
network. C-PSGD and EAMSGD take more time with
synchronous version taking longer than asynchronous
version, as expected. Ideally decentralized algorithms
take lesser time to complete 10 epochs, but attain higher
training error and loss compared to centralized counter-
parts, which synchronize model across all devices at ev-
ery iteration as seen in Fig 10 and 22, leading to a trade-
off for statistical efficiency.

4.3 Compression schemes

We demonstrate performance for quantizing 64 bit gra-
dients to 8 bits. We obtain order of magnitude de-
crease in bytes transferred (101.5 MiB compared to 102

MiB on average in previous plots). ChocoSGD and D-
PSGD achieve similar accuracies with much lesser data
exchange in Fig 11. However, DCD-PSGD converges
to a suboptimal value leading to higher training error
and loss compared to others in Fig 12. ECD-PSGD di-
verges under this scheme and hence isn’t plotted. Fig
25 shows variation in training error with time. Similar
results obtained with 8-bit quantized gradients are pre-
sented in the Appendix. Now, we randomly select 1% of
the gradients (20 out of 2000) which reduces communi-
cation volume even further (100.5 MiB on average). As
seen in Fig 13, ChocoSGD outperforms others and uses

5



Figure 12: Training error vs epoch
(1000 iterations) for 4-bit gradient
quantization

Figure 13: Training error vs bytes
communicated for 1% randomly
sampled gradients

Figure 14: Training error vs epoch
(1000 iterations) for 1% randomly
sampled gradients

much lesser bytes for lower accuracies in the beginning,
though total bytes communicated is close to other de-
centralized counterparts. DCD-PSGD diverges and isn’t
plotted while ECD-PSGD fails to converge in this case.
SGP attains next lowest training error after ChocoSGD
in 14. Training time varies as shown in Fig 26. Com-
pression schemes have been added on top of SGP and
we provide no theoretical convergence guarantees. Ta-
ble 2 shows accuracies achieved with these compression
operators.

4.4 Effect of different topologies
We now show the performance of D-PSGD on ring,
torus, fully-connected, completely disconnected and a
partially connected topology (Erdos-Renyi graph with
binomial distribution of vertex degrees implying it is nei-
ther dense nor sparse) for 40 devices. From 15, we see
that the total number of bytes communicated is least for
ring and greatest for fully-connected topology, and varies
with the number of neighbours as expected. Training
time in Fig 32 remains the same since our simulation
with a central weights store is topology-agnostic. From
Fig 16, we see that training error and loss are very similar
though marginally lesser for ring and marginally greater
for centralized topology in Table 3 since the former does
gradient synchronization across only 2 neighbors while
the latter does so for all devices in the topology.

4.5 Speedup across devices
The classification task involves a simple Neural Net-
work comprising one fully-connected hidden layer, that
doesn’t pose a computation bottleneck. We anticipate a
communication bottleneck which should slowly increase
with the number of devices since there is little benefit
and significant overhead of distributing gradient compu-
tation over multiple devices. Communication entails a
matrix multiplication between the topology mixing ma-
trix and weights matrix consisting of model weights for

Topology 9 16 25 36
vs devices

Ring 89.79 89.77 89.75 89.69
Torus 89.82 89.80 89.76 89.72
fully 89.77 89.78 89.77 89.75

connected
dis- 89.67 89.56 89.43 89.29

connected
partially 89.79 89.77 89.79 89.76

connected

Table 3: Accuracy(%) for D-PSGD across different
topologies and number of devices

all federated devices. More devices imply multiplication
of larger matrices which agrees with more communica-
tion overhead with more physical devices.

We demonstrate the performance of D-PSGD on ring
topology as we increase the number of devices in 18.
Training time is least for 9 devices but increases and re-
mains fairly constant for 16 to 36 devices. We notice that
data transferred to attain a given accuracy remains almost
same in Fig 17 as the number of neighbours remains un-
changed (2 for this ring topology). However, training
error and loss decrease marginally with more devices in
Fig 31.

4.6 Simulation on physical cluster

In our approach, weights for each device are stored in
shared memory which each device (CPU thread) can ac-
cess to get the weights for its selected subset of neigh-
bors. This bypasses actual communication that would
happen over remote network and is agnostic to topol-
ogy and hence doesn’t prove to be a strict bottleneck as
could happen in real scenarios. A container approach re-
stricts the amount of memory and CPU available to each
simulated device. However, the devices don’t commu-
nicate according to topology and though devices with

6



Figure 15: Training error vs bytes
communicated for different topologies
for D-PSGD

Figure 16: Training error vs epoch
(1000 iterations) for different
topologies for D-PSGD

Figure 17: Training error vs bytes
communicated for different number of
devices for D-PSGD in ring topology

Figure 18: Training error vs time
for different number of devices

Figure 19: Network usage on re-
mote worker for D-PSGD

Figure 20: Network usage on GCS
machine for D-PSGD

more neighbors fetch more data from shared memory,
there is no significant difference since the matrix storing
weights for all devices can be easily cached (40 devices
× 2000-dim 8-byte weights = 640 KB) partially within
each core’s L2 cache and rest in L3 cache.

Hence, we used a simulation of 40 devices spread
across 4 c220g1 machines using a Ray cluster where
each device talks to the Ray Global Control Store (GCS)
on one of the machines. Using dstat in Fig 19, we
see a significant difference for ring vs centralized topol-
ogy since each worker fetches weights for each of the 39
neighbors of each device on remote worker for the cen-
tralized topology, whereas in ring topology, weights of
only 2 device neighbors are fetched. Similar network re-
ceive bandwidth values on remote worker machines are
observed for other decentralized topologies. The net-
work send bandwidth of GCS in Fig 20 remains the same
across topologies (centralized or decentralized) perhaps
due to Ray optimizations. Since our gradient computa-
tion is not compute-intensive, scaling out across multiple
machines leads to increase in training completion time.

5 Related Work
Mini batch SGD is the natural parallelization of SGD,
though recently it has faced generalization concerns [13].
Here, we make a background survey of prior work on

different aspects of federated learning with our primary
focus on communication trade-offs, mainly in decentral-
ized approaches. Li et al [8] discuss several challenges
and how to address them. Communication bottlenecks
are dealt with using approaches such as local update of
model or using compression techniques for exchanging
data. Further, the authors discuss about how the privacy
issues are dealt in normal machine learning and federated
learning settings. Finally, in order to deal with heteroge-
neous devices, several techniques such as asynchronous
communication and active sampling are used. The au-
thors finally point out some future directions to improve
federated learning.

Communication Efficiency: For increased flexibil-
ity of communication vs computation, a variable num-
ber of local updates can be applied to each device in
parallel at each communication round. e.g. FedAvg
[14] is a method based on averaging local stochastic
gradient descent (SGD) updates for the primal prob-
lem. In decentralized setting, much work has been done
around optimizing gossip protocols [7] to suit feder-
ated learning. This introduced a state-of-the-art decen-
tralized stochastic optimization technique and has ex-
perimentally demonstrated the performance gain from
the newly introduced consensus and SGD algorithms.
Lian et al [11] have studied and compared decentralized-
PSGD with centralized-PSGD. The authors have empir-

7



ically proved that the distributed algorithm works at the
same level as the centralized approach. But, thanks to ad-
dressing the communication bottleneck in decentralized
approach, the authors have shown that decentralized ap-
proach is preferable for our use case. Compression tech-
niques include random sparsification [19] to randomly
mask input vectors and only preserve a constant number
of coordinates.

Systems Heterogeneity: To mitigate stragglers preva-
lent in a federated setting and achieve speedup, asyn-
chronous versions of centralized SGD [10, 6] have been
studied with bounded staleness of gradients. Simply ig-
noring device failures [5] can introduce bias. Coded
computation can tolerate device failures by introducing
algorithmic redundancy with recovery of the true gradi-
ents using replication of data blocks and gradient recom-
putation [20]. Nishio and Yonetani [16] explore novel
device sampling policies based on system resources, with
the goal being for the server to aggregate as many device
updates as possible within a pre-defined time window.

Statistical Heterogeneity: Multi-task learning frame-
works like MOCHA [17] have been designed for the fed-
erated setting. Zhao et al [24] explore transfer learning
for personalization by running FedAvg after training a
global model centrally on some shared proxy data. To
understand the performance of FedAvg in statistically
heterogeneous setting, FedProx [9] has recently been
proposed. FedProx makes a small modification to the Fe-
dAvg method to help ensure convergence. Approaches
that address fairness other than accuracy like Agnostic
Federated Learning [15] optimize the centralized model
for a target distribution from a mixture of client distribu-
tions.

6 Future work

Our project initially focused on comparing centralized
and decentralized algorithms. Various decentralized al-
gorithms were run on different topologies. The ex-
periments were conducted on standard Cloudlab nodes
where all the worker nodes and network interconnects
were homogeneous in terms of resources. It would be in-
teresting to run the same experiments on heterogeneous
machines.

One way to achieve heterogeneity is to have work-
ers geographically distributed with some subset of ma-
chines being relatively closer which would impact net-
work bandwidth. The experiments were run on CPUs
and the same experiments can be run on machines with
GPUs, TPUs or any combination of them. In a federated
setting, there is a good chance that some workers would
be inactive and will not be part of the training. With
this assumption in mind, each of these algorithms can

be compared based on robustness to node failures. The
relationship between robustness and accuracy can also be
studied keeping these failures in mind. Decentralized al-
gorithms can be further optimized through asynchronous
computation-communication overlap and different com-
pression techniques. These results would give us a bet-
ter perspective on decentralized algorithms in real-world
federated settings. We propose an approach to deal with
such federated settings by making use of differential pri-
vacy techniques to enhance privacy.

References
[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and

M. Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Ad-
vances in Neural Information Processing Systems,
30:1709–1720, 2017.

[2] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat,
N. Konstantinov, and C. Renggli. The convergence
of sparsified gradient methods, 2018.

[3] D. Alistarh, J. Li, R. Tomioka, and M. Vo-
jnovic. QSGD: randomized quantization for
communication-optimal stochastic gradient de-
scent. CoRR, abs/1610.02132, 2016.

[4] M. Assran, N. Loizou, N. Ballas, and M. Rab-
bat. Stochastic gradient push for distributed deep
learning. In International Conference on Machine
Learning, pages 344–353. PMLR, 2019.

[5] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba,
A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ,
S. Mazzocchi, H. B. McMahan, et al. Towards
federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.

[6] S. Dutta, J. Wang, and G. Joshi. Slow and
stale gradients can win the race. arXiv preprint
arXiv:2003.10579, 2020.

[7] A. Koloskova, S. U. Stich, and M. Jaggi. Decentral-
ized stochastic optimization and gossip algorithms
with compressed communication, 2019.

[8] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith.
Federated learning: Challenges, methods, and fu-
ture directions. IEEE Signal Processing Magazine,
37(3):50–60, May 2020.

[9] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi,
A. Talwalkar, and V. Smith. Federated optimiza-
tion in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

8



[10] X. Lian, Y. Huang, Y. Li, and J. Liu. Asyn-
chronous parallel stochastic gradient for nonconvex
optimization. In Advances in Neural Information
Processing Systems, pages 2737–2745, 2015.

[11] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh,
W. Zhang, and J. Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent,
2017.

[12] X. Lian, W. Zhang, C. Zhang, and J. Liu. Asyn-
chronous decentralized parallel stochastic gradient
descent. In International Conference on Machine
Learning, pages 3043–3052. PMLR, 2018.

[13] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi.
Don’t use large mini-batches, use local sgd. arXiv
preprint arXiv:1808.07217, 2018.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson,
and B. A. y Arcas. Communication-efficient learn-
ing of deep networks from decentralized data. In
Artificial Intelligence and Statistics, pages 1273–
1282. PMLR, 2017.

[15] M. Mohri, G. Sivek, and A. T. Suresh. Ag-
nostic federated learning. arXiv preprint
arXiv:1902.00146, 2019.

[16] T. Nishio and R. Yonetani. Client selection for
federated learning with heterogeneous resources in
mobile edge. In ICC 2019-2019 IEEE International
Conference on Communications (ICC), pages 1–7.
IEEE, 2019.

[17] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Tal-
walkar. Federated multi-task learning. In Advances
in Neural Information Processing Systems, pages
4424–4434, 2017.

[18] S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Se-
bag. Pascal large scale learning challenge, 2008.

[19] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Spar-
sified sgd with memory. In Advances in Neural In-
formation Processing Systems, pages 4447–4458,
2018.

[20] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karam-
patziakis. Gradient coding: Avoiding stragglers in
distributed learning. In International Conference
on Machine Learning, pages 3368–3376, 2017.

[21] H. Tang, S. Gan, C. Zhang, T. Zhang, and
J. Liu. Communication compression for decentral-
ized training. In Advances in Neural Information
Processing Systems, pages 7652–7662, 2018.

[22] T. Vogels, S. P. Karimireddy, and M. Jaggi. Pow-
ersgd: Practical low-rank gradient compression for
distributed optimization. In Advances in Neu-
ral Information Processing Systems, pages 14259–
14268, 2019.

[23] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep
learning with elastic averaging sgd. In Advances in
neural information processing systems, pages 685–
693, 2015.

[24] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and
V. Chandra. Federated learning with non-iid data.
arXiv preprint arXiv:1806.00582, 2018.

[25] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.
Parallelized stochastic gradient descent. In Ad-
vances in neural information processing systems,
pages 2595–2603, 2010.

7 Appendix
Please refer to the next page.

9



Figure 21: Training loss vs bytes
communicated for different variants
of SGD

Figure 22: Training loss vs epoch
(1000 iterations) for different vari-
ants of SGD

Figure 23: Training error vs time
(in seconds) for different variants of
SGD

Figure 24: Training loss vs time
(in seconds) for different variants of
SGD

Figure 25: Training error vs time (in
seconds) for 4-bit quantized gradi-
ents

Figure 26: Training error vs time (in
secs) for 1% randomly sampled gra-
dients

Figure 27: Training error vs bytes
communicated for 8-bit quantized
gradients

Figure 28: Training error vs epoch
(1000 iterations) for 8-bit quantized
gradients

Figure 29: Training error vs epoch
(1000 iterations) for top 1% gradi-
ents

Figure 30: Training error vs bytes
communicated for top 1% of
gradients

Figure 31: Training error vs epoch
for different number of devices for
D-PSGD ring topology

Figure 32: Training error vs time (in
seconds) for different topologies for
D-PSGD

10


	Introduction
	Background
	Centralized vs Decentralized
	Network Usage
	Statistical efficiency

	Mini-batch SGD variants

	Evaluation
	Experimental setup
	Comparing popular SGD variants
	Compression schemes
	Effect of different topologies
	Speedup across devices
	Simulation on physical cluster

	Related Work
	Future work
	Appendix

