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ABSTRACT
Modern database systems leverage key-value stores based
on Log-Structured Merge (LSM) trees in their storage layer
for storing data requiring fast look-ups and updates. How-
ever, recent studies have shown that application through-
put can be compromised by internal LSM tree operations
like background compactions that periodically write data
to disk. We aim at improvising the existing background
work scheduler on Google’s LevelDB for better application
performance. We decouple the foreground writes from back-
ground in-memory component flushes and compactions and
show that for real-life workloads with write bursts, we are
able to obtain 2.24-2.34X improvement in terms of observed
client write throughput by scheduling these background op-
erations during idle periods or when there are very few or
no writes to the database.

1. INTRODUCTION
Relational database models [25, 21, 18] come with an

inbuilt-schema and hence any update to a relation must
follow the schema. Hence, operations like insertions and
deletions incur high overheads. NoSQL databases [12] are
non-relational and can support fast insertions and lookups
critical to latency-sensitive applications with unstructured
or even semi-structured data. Recent trend has shown that
many NoSQL databases like Apache Cassandra [14] and
storage systems like Google Bigtable [5] use LSM trees to
organize the data on disk (HDD or SSD).

Applications require data platforms to deliver low latency
and high throughput. It is especially important for work-
loads with frequent updates in quick succession with bursty
behaviour. Log-Structured Merge key-value stores (LSM
KVs) [23] such as RocksDB [27], LevelDB [15], DynamoDB
[9] are widely used in production today for such write-heavy
workloads. These are used to store frequently accessed/updated
metadata for a wide range of enterprise applications. LSM
trees have gained widespread popularity owing to their abil-
ity to absorb writes quickly in an in-memory buffer [22] and
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provide high write throughput to applications without af-
fecting read performance. A tree-like structure is main-
tained on storage. In addition to client operations, LSM
KVs implement two types of internal operations: flushing,
which persists the content of in-memory buffers to disk, and
compaction, which merges data from the higher levels (near
to level-0) into the lower levels of the tree to remove older
versions of the key value pairs.

In this paper, we study the working of LSM trees by
analysing a popular NoSQL database, LevelDB, which is
a key-value store based on LSM trees with levelling merge
policy (illustrated in Fig 2) optimized for reads. LevelDB
was developed by Google in 2011. We demonstrate that it
suffers from poor write throughput, especially under heavy
and variable client write loads. There has been recent focus
on improving the client throughput of LSM KVs [24, 19, 13,
10] by focusing on the cost of internal operations but this
increases write latency. Client operations arriving during
ongoing internal operations will experience high latencies
because of interference with theses internal tasks, especially
for bursty client loads.

A naive approach would be to tune several hyper-parameters
related to the LevelDB tree structure [28, 29] to improve per-
formance for each workload. This can help us to adapt to
a variety of workloads, including bursty ones. However, a
burst of client writes can trigger a burst of flushes. Due to
client writes being logged to disk at the same time, flushes
have to share the limited bandwidth and are slow. Writes
can get stalled if this in-memory component fills up, in-
troducing delays. This leads to the need for coordination
between foreground client load and internal operations and
hence, the need for redesigning the background work sched-
uler in LSM trees.

2. BACKGROUND
We now discuss the various components in an LSM KV

store and various client and internal operations supported
by them.

2.1 LSM KV Architecture
As shown in Fig 1, the main data structures used in Lev-

elDB are the Memtable, SSTable and the commit log.

• Memory component : This is an in-memory sorted
data structure Cm, also referred to as memtable. It
is typically a B-Tree, skip list, hash table or even an
array. The purpose of Cm is to temporarily absorb
user updates. When Cm exceeds its size threshold, it
is replaced by a new, empty component in memory.
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Figure 1: LevelDB Design

The previous one is then flushed as-is to level-0 L0 of
the LSM disk component in the background.

• Disk component : The disk component Cdisk is struc-
tured into multiple levels (L0, L1, ...Ln), where each
level is larger than the previous level by a configurable
factor. LevelDB uses a size ratio of 10. Each level
contains multiple sorted files (sorted by key wherein
key-value records maybe compressed), called SSTa-
bles (short for sorted string tables). The number of
SSTables on a given level is limited by a configuration
parameter, as is the maximum size of an individual
SSTable for a given level. L0 can store a maximum
of 4 SSTables, while L1 can store maximum 10 MB,
L2 100 MB and so on before triggering compactions.
SSTables on levels Li (i > 0) have disjoint key-ranges.
L0 allows overlapping key-ranges between files.

• Commit log : The commit log Clog stores the up-
dates that are made to Cm on stable storage in small
batches. Clog is typically smaller than Cm. It is used
if the application requires the data to be durable in
case of a failure, but it is not mandatory. The heuris-
tics/optimizations we propose apply regardless of whether
Clog is active or not.

We also highlight the read and write paths in LevelDB as
illustrated in Fig 1.

• Read path : The read first goes to Cm in memory.
If the key k is not found in Cm, the read continues to
L0, L1, ...Ln, until k is found. At most one SSTable
is checked on each level Li for i > 0 owing to non-
overlapping key ranges. More than one SSTable in
L0 may need to be checked because L0 SSTables may
contain the entire key-range. Per-SSTable Bloom fil-
ters [11, 3] are used to address this issue. Therefore, in
practice, only a single SSTable ends up being checked
on L0 most of the time.

• Write path : When the Update(k, v) or the Write()
call for a key-value pair is made on the database, the
key value pair is logged to commit log Clog and then
appended to the memtable Cm in memory. The writes
continue till Cm reaches a particular size and then,
a new empty memtable is created to take the writes
and the previous one is flushed. This can recursively
trigger compactions until all levels are within their size
thresholds.

2.2 LSM KV Operations
LSM KVs implement two main kinds of operations, which

are executed within a single thread in the background for
LevelDB.

• Client operations : The main client operations in
LSM KVs are writes (Update(k, v)), point reads (Get(k)),
and range scans (Scan(k1, k2)). Update(k, v) asso-
ciates value v to key k. Updates are absorbed in Cm,
to achieve high write throughput. Get(k) returns the
most recent value of k. Scan(k1, k2) returns a range
of key-value tuples with the keys ranging from k1 to
k2. First, Cm is queried for keys in the k1–k2 range.
Then, SSTables in Cdisk that may contain the k1–k2
range are read, going down the levels, until all the keys
are found. Client operations are enqueued and served
in FIFO order by a dedicated thread.

• Internal operations : LSM KVs implement flushing
and compaction as background processes. Flushing
dumps Cm as is onto L0. Because flushing speed af-
fects the rate at which new memory components can be
created, memory components are written to disk with-
out additional processing. As a result, L0 allows over-
lapping key-ranges between files. Compaction is the
operation that cleans up/compacts the LSM tree by
removing duplicates/deleted values. It merges SSTa-
bles in level Li of Cdisk into SSTables with overlapping
key ranges in Li+1, discarding older values in the pro-
cess. When the size of Li exceeds its threshold, an
SSTable F in Li is picked according to some priority
or in a round-robin fashion and merged into the SSTa-
bles in Li+1 that have overlapping key-ranges with F ,
in a way similar to a merge sort. Compaction intro-
duces large I/O overhead by reading the SSTables and
writing new ones to disk. When a new internal work re-
quest is enqueued, it is placed at the end of the queue.
In LevelDB, a background flush and compaction are
enqueued when Cm fills up. An internal worker thread
serves the requests in the internal work queue. An
internal operation is enqueued whenever the system
deems it necessary in order to maintain the structure
of the LSM tree (e.g., when the maximum size or max-
imum number of files is reached on a level).

2.3 Important LSM KV parameters
There are several important tuning knobs in LevelDB

which can lead to improvement in performance. We en-
list some DB initialization or key value store startup time
parameters which can be passed to the binary:

• write buffer size : This controls the upper limit of
memtable size after which it is converted to an im-
mutable version and flushed to disk. LevelDB uses a
default value of 4 MB.
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Figure 2: Levelling merge policy

• max file size : SSTable sizes can go upto this limit.
As the compaction outputs are written, it is broken
into chunks of the above size, where each such chunk
is an SSTable. This is same across all levels. LevelDB’s
default value is 2 MB.

• sync : This boolean flag when set to true, ensures that
any update is persisted to the commit log before being
written to the memtable. When false, these updates
are persisted lazily onto disk. This is similar to the
”force” vs ”no-force” policy used by buffer managers.
LevelDB uses synchronous logging.

Now we enlist some interesting internal parameters modify-
ing which needs a complete recompilation for running the
binary:

• kL0 CompactionTrigger : L0 to L1 compaction is started
when we hit this many SSTables at L0. Default is 4
SSTables in LevelDB.

• kL0 SlowdownWritesTrigger : To prevent a huge de-
lay as SSTables accumulate at L0, writes are gradually
delayed as L0 files build up. Each individual write is
delayed by 1 ms when L0 files are more than this pa-
rameter value, whose default value is 8 in LevelDB.

• kL0 StopWritesTrigger : When the number of L0 files
is greater than this value, incoming writes are stalled
on a conditional variable unless L0 to L1 compactions
complete, reducing the number of L0 files. The default
is 12 SSTables in LevelDB.

• kNumLevels : Total number of levels in the LSM tree.
All compactions push files to lower levels of the tree.
Any compactions happening at the last level of the
tree push new files onto the last level itself. LevelDB
has 7 levels by default.

2.3.1 Bayesian Optimization
The impact different (input) parameters (e.g. buffer size,

worker thread count, etc) can have on the (output) per-
formance of a system for a given workload (input) can be
modeled as a multidimensional function - whose equation we
don’t know apriori, but are instead trying to learn through
careful sampling of the input space and experimentation
(test/benchmark runs) to gather output points. Bayesian

optimization is one technique for efficiently selecting the
samples in the input space to learn the approximate shape
of that function and find its optimum, i.e., the parameters
that lead to the best performance.

Bayesian Optimization is a global optimization strategy,
and can find the global optimum of a mathematical function
that’s not necessarily convex, without requiring information
like gradients. Finding the global optimum of a general non-
convex function is NP-hard, which makes it impossible to
provide effective convergence guarantees for any global op-
timization strategy, including Bayesian Optimization. How-
ever, it has been found to be quite effective in the past.

3. MOTIVATION
We would like to design a system that is self-tuning based

on the workload. For this work, we concentrate on work-
loads that have write bursts with intervening idle intervals.
In order to absorb the write bursts, the system must be able
to schedule the background work during these idle periods
without affecting the foreground writes. If they overlap or
interfere with the foreground writes, this might saturate all
available CPU cores and disk bandwidth limits in cloud com-
puting environments with constrained resources.

So, we aim at taking the first step towards building a
system that has explicit control over the background work
thereby leading to better performance in terms of metrics
including throughput, latency with reduced read, write and
space amplification. Any amplification implies extra over-
head and should be minimized. E.g. Write amplification is
the ratio of the amount of physical data written to disk to
the amount of logical or actual data intended to be written.
LSM trees use compactions to organize data in the form of
sorted files to optimize lookup performance. We try to study
the working of the compaction process in LevelDB and sug-
gest ways to improve its scheduling and measure its impact
on all the metrics discussed above.

Typical to any database system, LevelDB comes with sev-
eral parameters that have to be tuned to obtain the best per-
formance for any given workload characteristics. We explore
the DB initialization time and compile-time parameters pro-
vided by LevelDB and their impact on the performance met-
rics. We jointly tune a combination of parameters and op-
timize for performance in terms of latency and throughput
while also experimenting with reliability metrics like batch
synchronization.

4. RELATED WORK
LSM tree based key value stores provide various opportu-

nities and tradeoffs between various metrics including write/read
latencies and throughputs, write/read amplification and space
usage of the database. There have been a significant number
of works that have looked at these tradeoffs over the years.
These works can be classified into looking at the core design
of the LSM tree, algorithms considered for the compaction
process, tradeoff between memory usage and user perceived
metrics and using hardware trends for better and efficient
design of LSM trees. The following are some of the works
relevant to LSM key value stores.

SILK by Balmau et al. [2] talks about the high tail laten-
cies observed in LSM KV stores and attributes this to the
interference between client writes, flushes and compactions.
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They introduce the notion of an I/O scheduler for LSM KV
stores to reduce the said interferences. They mainly pro-
pose three techniques to reduce tail latencies. They oppor-
tunistically allocate more write bandwidth to the flushes and
compactions during periods of low foreground load. This is
achieved by rate limiting writes from the background jobs
scheduled by RocksDB. They prioritize flushes and com-
pactions at the lower levels (near level-0) of the tree. This is
implemented by using high and low priority thread pools for
different background work. The compactions corresponding
to the lower levels (level-0 to 1) are scheduled using the
high priority threads as opposed to the other compactions
being scheduled using low priority threads. Whenever the
flushes are stalled due to the background compactions, the
compactions are pre-empted to provide higher priority to
the flushes of immutable memtables to level-0 in the LSM
tree. They show that they are able to achieve an order of
magnitude reduction in 99th percentile write latencies on
production workload with write bursts at Nutanix using the
proposed techniques.

MatrixKV by Yao et al. [30] proposes techniques to re-
duce write amplification and write stalls in LSM KV stores
using matrix containers in Non Volatile Memory (NVM).
The main observations that they make are that write stalls
stem from large amounts of data involved in L0 to L1 com-
pactions. They present techniques to do smaller and cheaper
L0 to L1 compactions and they mainly concentrate on DRAM
(used for Memtable)-NVM (used to store the L0 level files)-
SSD (other levels in the LSM tree) architecture. They de-
vised a technique called column compaction where they di-
vided the files in L0 into key ranges and compacted based
on key ranges rather than considering complete files in L0.
This technique helps in reducing the amount of data read
and written as part of each compaction. They observe that
the write amplification increases as the number of levels in
an LSM tree increases. In order to address these issues, they
propose increasing the width of the lower (closer to level-0)
levels thereby decreasing the depth of the LSM tree and
reducing write amplification. They show that using these
techniques, they are able to obtain orders of magnitude im-
provement in tail latencies and random write throughput.

LSM based storage techniques: a survey by Luo et al. [17]
presents a survey of the recent work on LSM trees. They
provide a taxonomy to classify LSM trees and also discuss
the strengths and tradeoffs of the works presented. The
paper also presents a discussion about open source LSM-
based NoSQL key value stores. They classify related works
into the following categories.

• Reducing write amplification: Triad by Balmau et al.
[1] uses the techniques of leveraging data skewness in
the memory component to avoid frequent I/O opera-
tion. At the storage level, Triad uses the technique of
batching multiple I/Os for better performance.
PebblesDB by Raju et al. [26] presents a novel data
structure inspired by skip lists which they term as frag-
mented LSM. They introduce the concept of guards in
each level of the LSM tree. The guards are probabilis-
tically selected and they separate the key range into
multiple partitions and use them to avoid rewriting
data at the same level reducing write amplification.

• Hardware trends: Wisckey by Lu et al. [16] presents a
persistent LSM KV where they separate the key from
the values to minimize I/O amplification, making use
of the features provided by SSDs. They show that
Wisckey is 2.5-111X faster as compared to LevelDB in
loading the database and 1.6-14X faster for random
lookups. Storing the values as a log gives better write
and I/O performance compromising range queries.

The paper also discusses other papers in the category of
auto-tuning LSM trees like Monkey and Dostoevsky, LSM
trees for special workloads like LSM Trie and SlimDB and
works focusing on merge operations including bLSM and
FloDB.

Monkey by Dayan et al. [7] presents that key value stores
backed by LSM trees have a tradeoff between lookup cost,
update cost and main memory cost. They show that by al-
locating a higher number of bloom bits to the lower (near
to level-0) one can achieve reduction in the lookup cost but
with a given memory budget and false positive rate.
Dostoevsky by Dayan et al. [8] tries to show that equally
expensive merge operations done across all levels of LSM
tree are not actually required. They propose lazy leveling
that removes merge/compaction operations from all levels
except the last level improving the worst case update cost
while maintaining the same bounds on point lookup costs
and long range lookup costs. They introduce Fluid LSM,
a generalization of the LSM tree design space that can be
parameterized to assume existing LSM designs based on the
application workload and underlying hardware.

Characterizing, Modeling,and Benchmarking RocksDB Key-
Value Workloads at Facebook by Cao et al. [4] presents a
characterization of workload from RocksDB production use
case at Facebook. They show that the distribution of the
keys and values are highly related to the use case and they
show that access to the key values have good locality and
follow certain patterns.

Bourbon by Dai et al. [6] explores how to reduce the read
latency by introducing point wise linear regression for con-
stant time lookup of the key in an SSTable of the LSM tree.
They also develop a cost-benefit analysis model to decide
when it is advantageous to build the linear model for an
SSTable based on the average lifetime of SSTables.

5. NEW SCHEDULER DESIGN
We make the following changes to decouple the foreground

activity (writes) from background activity (compactions).
LevelDB is typically used as a single-threaded application.
Foreground writes are blocked when the immutable memtable
is being flushed to level-0 of the LSM tree. Background com-
paction process is scheduled on a different thread from the
foreground write thread, but performs flushing of immutable
memtable (if any) before that on the same thread running
compaction. Any subsequent compactions triggered will run
on a separate thread.

We have devised a way to exclude the foreground writes
from overlapping with memtable flushes and background
compactions. As shown in the Fig 3, writes are appended
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Figure 3: New write path designed for improved
performance

to the current memtable which is in-memory after writ-
ing to the log. Once the size of the memtable exceeds the
current write buffer size value, we check if the previous
memtable is still being flushed, and if that is the case we
use the current memtable to absorb pending writes. If there
is no previous memtable being flushed, we convert the cur-
rent memtable into its immutable version, and create a new,
empty memtable to take the incoming writes while trigger-
ing the flushing of this immutable memtable using a new
thread, which flushes it to level-0 of the LSM tree.

A separate thread is created when opening the DB that
continuously monitors the client write throughput and de-
termines whether any background compaction is needed.
This thread itself performs background compaction of SSTa-
bles from one level to another. For a bursty workload com-
prising mostly writes, we choose simple heuristics to sched-
ule background compactions whenever the write throughput
is below a certain threshold, or after the last write of a write
burst in the optimized system.

Through this, we show how one can have explicit or learned
rules based on the workload, that can be used to control
when the background compaction is supposed to happen.
Since the background compaction process is both CPU and
disk (I/O) intensive, this can lead to significant improve-
ments in terms of throughput and latency for foreground
writes as observed by the application or client.

6. EVALUATION

6.1 Workload
We concentrate on designing a workload with write bursts,

wherein a process writes data for short intervals of time fol-
lowed by a sleep duration which the process keeps repeating
for the entire workload duration. Taking inspiration from
Fig 4, we design the workload and implement it as a part of
the micro benchmarks provided by LevelDB. We refer to the
experimental workload as ”write random bursts in time”, al-
though we can choose to perform a certain number of writes
before going to sleep, referred to as ”write random bursts
in count”. We can run the workload by specifying the total
duration of experiment, write burst interval and the sleep
duration or the idle time between write bursts. We can sim-
ulate various workload durations, where the writer process
writes for bursts of intervals specified in an array followed
by corresponding sleep intervals.

Figure 4: Workload trace from Nutanix production
environment

6.2 System Setup
We use Cloudlab bare-metal c220g1 machines to run the

experiments with Intel Xeon CPU E5-2630 v3 2.40GHz x86
architecture. We experiment using both HDD and SSD as
the underlying storage medium. We present the results for
SSD as the storage medium as we observe the same perfor-
mance improvement across both media. Linux cgroups is
a kernel utility that can be used for limiting the resource
usage for a process or a group of processes. We use this
utility to limit the number of cores to the bare minimum
required for the experiments. We use of cgroup v2 to limit
the disk write bandwidth to the bare minimum 100 MB/s
that can satisfy the client load in the default setting of Lev-
elDB and to also observe the behaviour of the scheduling
policy coupled with different device bandwidth constraints.

6.3 Results

6.3.1 Approach 1: Tuning parameter knobs
We use a remote optimizer, Microsoft’s MLOS [20] lever-

aging Bayesian Optimization whose architecture is shown in
Fig 5. It runs on a separate thread that probes latency and
throughput values (output performance metrics) at every
interval and tries to suggest new values for various parame-
ters of LevelDB for each run. It then again monitors these
output metrics for subsequent runs with new parameters
to check for potential improvements and provides further
suggestions based on that. The optimization proceeds in
iterations where it explores new values while staying close
to the most recent optimal value. We configure the explo-
ration and exploitation ratio as 1:10 using random forests
to find optimal parameters for our given workload within as
few iterations/runs as possible.

Here, we use one of the default workloads of LevelDB,
"fillrandom", that randomly inserts keys in the range of 1
to 1 million sampled from a uniform distribution. We try to
maximize write throughput as a function of write buffer size

(memtable size), max file size (SSTable size) and internal
parameters in 2.3 that we export as runtime parameters like
kL0 StopWritesTrigger and kL0 SlowdownWritesTrigger for
this experiment. We perform optimization for parameters
one-by-one as well as demonstrate the joint optimization of
parameters.

Logging : We also run the same "fillrandom" work-
load with both synchronous and asynchronous logging as
described in 2.3. Synchronous logging persists updates in
batches of size entries per batch on disk. Default syn-
chronous logging persists updates one-by-one. Turning that
off gives a much higher throughput, but doesn’t provide
any guarantee of inorder on-disk persistence. Using larger
batches gives performance comparable to asynchronous log-
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Figure 5: MLOS Architecture

Mode Batch size Throughput Latency
Async - 21.8 MB/s 5.87 µs/op
Sync 1 0.4 MB/s 389.85 µs/op
Sync 1000 24.1 MB/s 5.4 µs/op

Table 1: Results for synchronous vs asynchronous
logging

ging but an entire batch of updates may get lost. The results
are provided in Table 1.

Memtable size : With "fillrandom" workload, we mea-
sure throughput as a function of memtable size, starting
from 1 MB to 128 MB in steps of 2X. We observe that the
write throughput increases as we keep on increasing the size
of the memtable as shown in Fig 8 until 16 MB. Larger
memtables absorb more write bursts needing lesser flushes.
The write throughput decreases after that since keys have to
be inserted in their proper place in an already large sorted
skip list that LevelDB uses. This is empirically verified by
MLOS in Fig 6 which produces an optimal memtable size of
9.86 MB for a maximum write throughput of 36.3 MB/s in 7.
However, the cost of lookups increases with memtable size.
This experiment acts as an example to affirm that Bayesian
optimization can be used for database parameter tuning.

SSTable size : We empirically evaluate the optimal SSTable
size for maximum write throughput. We see that MLOS con-
verges to a value of 26.87 MB in Fig 9, much larger than the
default size of 2 MB. This decreases the frequency of back-
ground compactions, making it less likely to interfere with
client writes. Fig 10 shows how write throughput evolves
with MLOS’ optimal value giving a max throughput of ∼
31.77 MB/s. This is similar to the optimal SSTable size of
32 MB that we obtain in Fig 11 on running with various
SSTable sizes from 32 KB to 64 MB in steps of 2X.

Joint optimization : Now, we maximize throughput as
a function of both memtable size and SSTable size. We find
an optimal memtable size of 8.47 MB and SSTable size of
12.85 MB from Fig 12 and 13 respectively. Jointly optimiz-
ing parameters taking into account their correlation gives us
higher throughput (∼ 44 MB/s) than found previously as in
Fig 14.

Slow down writes trigger : We now try to manu-
ally find the optimal value of kL0 SlowdownWritesTrigger

that maximizes throughput while keeping other parameters

to their default values, except for kL0 StopWritesTrigger,
which we keep at 512 as we vary the kL0 SlowdownWrites

Trigger from 1 to 128 in steps of 2X in 17. A higher value
will not slow down writes and hence increase client through-
put at the expense of accumulation of more L0 files which
can lead to queuing up of too many L0 to L1 compactions.
We also plot values found by MLOS and their corresponding
throughput in 15 and 16 respectively. MLOS’ optimal value
of 58 differs slightly from 32 that we initially obtained.

Stop writes trigger : Now, we investigate the effect of
only kL0 StopWritesTrigger on throughput, while keeping
kL0 SlowdownWritesTrigger to 512 to prevent its influence
on throughput. Here, we vary kL0 StopWritesTrigger from
4 to 128 in steps of 2X in 20. Since kL0 CompactionTrigger

is set to 4, this means that if the kL0 StopWritesTrigger is
set to anything below that, the program will deadlock since
it will be waiting on a lower number of L0 files than what
is required to trigger background compaction, which in turn
signals the conditional variable on which writes wait. A
higher value implies that lesser writes will be stalled signif-
icantly improving performance on bursty workloads while
again building up too many L0 files leading to L0 to L1

compactions that might interfere with future bursts. MLOS
finds an optimal value of 82 as in Fig 18 and Fig 19, which
is close to 64 as seen in Fig 18.

6.3.2 Approach 2: Heuristic-based scheduling
We use the "write random bursts in time" workload

described above in 6.1 for a total duration of 120 seconds.
We set the write bursts interval to 10 seconds, and idle in-
terval to 20 seconds. So we observe continuous and random
writes in a uniformly distributed key range from 1 to 1 mil-
lion for 10 seconds followed by an idle time of 20 seconds.
The key observation that we try to make here is how ben-
eficial is it to do the background compaction work in the
idle period compared to overlapping of the background com-
paction work with foreground writes as happens in LevelDB.

We use the dstat utility to measure the disk through-
put and CPU utilization metrics. Using pthreads library
functions, we bind the load generator thread, the memtable
flushing thread and the background compaction thread onto
different, independent CPUs and pin them for the entire
workload duration. We opt for synchronous logging with a
batch size of 100 in both cases.

Figure 21 shows how well the default compaction strat-
egy works in LevelDB while Figures 22, 24 show 2 sets
of observations to illustrate how our new heuristics affect
throughput. The X-axis represents workload duration while
the shaded blue intervals depict write bursts and white re-
gions depict idle intervals. The five sub plots presented in
each observation/graph are as follows:

• Subplot 1: LevelDB throughput indicates the through-
put as observed by the client application doing the
writes. Disk reads and disk writes indicate the through-
put as observed by the disk measured using dstat.

• Subplot 2: This shows how the data in the in-memory
memtable and at each level of the LSM tree changes
over time. We can observe how the data is moved
from higher levels to the lower levels (lower here be-
ing level-3 and higher being level-0). Flushes push
data from memory onto level-0 while background com-
pactions move the data to lower levels in the LSM tree.
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Figure 6: converging to optimal
memtable (write buffer size) size
vs Bayesian optimizer iteration

Figure 7: Peak throughput ob-
tained when optimizer converges
to the optimal Memtable size

Figure 8: Throughput vs memtable
size by manually tuning the
memtable size for verification

Figure 9: Optimal value of
SSTable size vs iteration

Figure 10: Peak throughput
value vs iteration

Figure 11: Throughput vs SSTable
size with manual SSTable size tuning

Figure 12: Optimal memtable
size vs Bayesian optimizer iter-
ation

Figure 13: Optimal SSTable size
vs Bayesian optimizer iteration

Figure 14: Throughput increase as
the optimizer converges

Figure 15: Optimal Slowdown
Writes Trigger vs iteration

Figure 16: Peak throughput
value vs iteration

Figure 17: Throughput vs Slowdown
Writes Trigger
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Figure 18: Optimal Stop Writes
Trigger vs iteration

Figure 19: Peak throughput
value vs iteration

Figure 20: Throughput vs Stop
Writes Trigger

• Subplot 3: This shows the CPU utilization during the
course of the workload. We have limited the number
of cores to 2 for default LevelDB configuration and 3
for the other experiments for ease of observation.

• Subplot 4: This plot shows data written due to the
background compaction process. It also indicates the
output level of the LSM tree to which the compaction
outputs are written.

• Subplot 5: This plot shows the data written to level-0
of the LSM tree due to memtable flushes.

In Figure 21, we observe both L0 and L1 compactions hap-
pen during the write burst interval as the disk bandwidth
and CPU cores remain largely unutilized during idle inter-
vals. We see frequent flushes happening before each L0 to
L1 compaction from subplots 4, 5. These severely decrease
overall write throughput and increase latency as resources
are over-utilized during write bursts and under-utilized dur-
ing idle periods in between.

We allow memtable flushes, which are less CPU and I/O
intensive to be scheduled automatically whenever memtable
fills up. We schedule background compactions if need be
whenever the write throughput is below 0.5 MB/s as mea-
sured by the monitoring thread. Client throughput is probed
at intervals of 500 ms. Figure 22 shows an ∼ 2.2X increase
in write throughput over default setting. From subplot 1,
we observe no competition for disk bandwidth in Figure 21.
As evident from subplots 2, 3, and 4, compactions happen
only in idle intervals between bursts. We observe a single
chunk of L0 to L1 compaction, followed by comparatively
less intensive L1 to L2 compaction. If the probing is too
frequent, this may add some overhead and a very small in-
terval (∼ 1µs) can lead to no write in such short intervals
even within a write burst, leading to compactions creep-
ing in. However, tuning this threshold is important since a
higher threshold may lead to some compactions happening
within the write burst itself as shown in Figure 23. This is a
characteristic of the workload itself, hence we explore other
heuristics which are completely independent of the pattern
of write bursts.

Figure 24 demonstrates scheduling of background work
500 ms after the last write in a write burst. In this case, the
probing thread checks very frequently to accurately record
the last write within each burst. This probing adds some
CPU overhead as seen in subplot 3. Importantly, we see
that here also, all compactions are scheduled in the idle in-
tervals with a major L0 to L1 compaction followed by minor
L1 to L2 compactions. Flushes with lightweight CPU and

Approach Data written Throughput Latency
Default 741.7 MB 6.1 MB/s 18.060 µs/op

1 1659.3 MB 13.7 MB/s 8.075 µs/op
2 1737.7 MB 14.3 MB/s 7.711 µs/op

Table 2: Comparison of different background
scheduling approaches

memory footprint happen as memtable becomes full during
the write bursts itself. As before, background compactions
consume CPU and disk bandwidth only during idle inter-
vals leading to a 2.34X increase in write throughput and
marginal decrease in write latency.

A comparison among these approaches is provided in Ta-
ble 2, showing the benefits of our approach for bursty write
workloads that dominate today’s datacenters.

7. CONCLUSION
In this project, we presented a way to make the internal

maintenance in LSM KV stores aware of the client workload
for better scheduling of internal background tasks to fully
utilize resources without hampering client performance. Specif-
ically, we show that by decoupling the foreground writes
from memtable flushes and background compactions, we can
have explicit control over scheduling the background com-
pactions. We show that this can be beneficial for indus-
trial workloads with write bursts and idle intervals, since
these idle time periods can be used for the background com-
paction process. This has showed ∼ 2X increase in client
write throughput and decrease in write latency without any
need for tuning parameters controlling the LSM tree struc-
ture for each workload. We show scenarios where we can ob-
tain throughput improvement, one where client issues batch
synchronous writes in bursts as well as asynchronous writes
in bursts. Although these are specific cases, we believe that
the technique is general enough and machine learning tech-
niques can be used to learn the best compaction scheduling
policy and corresponding mechanisms for LSM trees.
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Figure 21: Default compaction scheduling policy in LevelDB: Write throughput: 6.1 MB/s

Figure 22: Scheduling compactions for write throughput below a certain threshold: Write throughput: 13.7
MB/s
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Figure 23: Scheduling compactions without a low enough threshold for write throughput: Write throughput:
11.9 MB/s

Figure 24: Scheduling compactions just after last write in a write burst: Write throughput: 14.3 MB/s
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8. INDIVIDUAL CONTRIBUTIONS
Since, we are two people working on the project, both of

us were involved almost equally in all of the stages.

• Both of us contributed equally in experiments of using
MLOS for tuning the Memtable size, SSTable size and
other initialization and compile parameters for better
performance

• Equally involved in decoupling the background com-
pactions and flushes from foreground writes

• Contributed equally to writing all sections of the re-
port
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