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ABSTRACT

Raman hyperspectral imaging has a number of applications
in diverse fields such as material science, medicine and geol-
ogy. However the image acquisition of Raman hyperspectral
images is known to be a sequential and extremely time-
consuming process, depending upon the detector efficiency.
In this paper we describe a straightforward, yet effective
method that can potentially enable much faster acquisition.
The method involves measuring only a subset of the pixels
of the complete image, where the subset is chosen either
at uniform intervals or else randomly. The reconstruction
of the complete image can then proceed by means of an
on-the-fly dictionary-based inpainting algorithm, where the
dictionary and the sparse codes are inferred on the fly from
the undersampled acquisitions. Our proposed architecture is
considerably simpler than existing architectures developed
for compressive Raman image acquisition. We demonstrate
encouraging reconstruction results on several real datasets.

Index Terms— Raman Hyperspectral Imaging, Com-
pressive Sensing, Spatial Undersampling

1. INTRODUCTION

Raman spectroscopy is a non-destructive, non-invasive method
that can provide important information about various ma-
terials ranging from biological tissues [1] to materials in
pharmacy, chemistry or materials science [2], [3], [4], [5],
to art preservation [6]. Moreover, Raman imaging does not
require usage of any additional chemical agents for the ac-
quisition, and provides very high spatial resolution. Raman
spectroscopy is also employed in the field of geology [7] for
determining mineral composition of rocks as well as in the
field of semiconductors [8] for probing into their structure and
examining the presence of traces of other materials integrated
into it. However, the Raman signal is usually weak (one in
one hundred million incident photons). The signal strength
can be very low for some sample types and ‘requires power-
ful excitation compatible with the sample damage threshold’
[9]. The absence of powerful enough illumination must be
compensated for by significantly higher acquisition times for

Raman spectra, so as to avoid the inherent shot noise which
can lower the signal to noise ratio (SNR). This is particularly
the case if the CCD detectors have low efficiency, and higher
efficiency detectors significantly raise the instrument cost.

There are two main approaches to Raman spectra image
acquisition - serial and direct (also called snapshot). In the
former case, the images are acquired sequentially in a point-
wise manner (i.e. the entire spectrum is acquired one pixel
at a time), or using line mapping where a 2D spatio-spectral
signal is acquired across a single line. In the point mapping
approach, the acquisition time is especially high. For a typical
time of 1 second per spectrum, a 1 megapixel image can take
days for acquisition. In the direct approach, all spatial points
are simultaneously imaged for a given wavelength, which is
more efficient. In this case, however, the acquisition time is
directly proportional to the number of wavelengths.

Compressive imaging has emerged as a flourishing sub-
field of signal and image processing in recent times [10]. It in-
volves acquisition of images directly in a compressed format,
followed by conversion of the compressive measurements to
the conventional image format typically via efficient convex
optimization procedures. These procedures typically exploit
the inherent sparsity or compressibility of many modalities of
images in well-known orthonormal bases such as the wavelet
or discrete cosine transform bases [11]. The emphasis of com-
pressive imaging is on saving acquisition time. The time-
intensive acquisition of Raman images, as well as their in-
herent smoothness as signals, renders Raman imaging as a
potential area for applications of compressed sensing.

Contributions and Paper Organization: In this paper,
we propose an idea for a compressive Raman imaging archi-
tecture, which involves measuring the spectra at only a subset
of the total pixels of the image. The subset can be chosen
randomly or in a structured fashion. In either case, this has
the potential to immediately improve acquisition time. The
missing pixels can be filled in, using an application of blind
compressed sensing (BCS) [12] to implement an inpainting
procedure. We present this formulation and the algorithm in
Sec. 2. Some prior work in the area of compressive Raman
imaging is summarized in Sec. 3. Experimental results on



real datasets are presented in Sec. 4. We conclude in Sec. 5.

2. PROBLEM FORMULATION

Let the image of interest be denoted as H , having size Nx ×
Ny × Nλ, where Nλ is the number of wavelengths. As per
our architecture, the complete spectrum (of Nλ values) will
be measured at only a fraction of the NxNy pixels. No mea-
surements are made at other pixels. Let the acquired incom-
plete image be denoted as G. The missing pixels in G need
to be estimated via an efficient algorithm. For this purpose,
we consider dividing H (and correspondingly G) into a num-
ber of overlapping patches, each of size p × p. Let hi, gi be
the patches in H and G respectively, at location indexed as i,
expressed as p2 × 1 vectors. Then we have the following:

gi = Φihi + ηi, (1)

where ηi is the noise vector at location i and Φi is a p2 × p2
diagonal sensing matrix such that Φi,jj (the jth diagonal ele-
ment in Φi) contains 1 if gij is measured and 0 otherwise. If
we follow a random sampling pattern, then the sensing matri-
ces for every patch will be different. However if the sampling
pattern bears more regularity, i.e. if it measures only every lth

pixel (l > 0) in both directions (often termed ‘decimation’),
then there will be only p2 different sensing matrices. In this
case, the reconstruction is akin to an image super-resolution
problem.

Let n be the total number of patches thus considered. The
task now reduces to estimating {hi}ni=1 given {hi,Φi}ni=1.
We now frame this as a BCS problem. For this, we express
each patch hi as a sparse linear combination of columns of a
dictionary matrixA of size p2×K, i.e. hi = Asi where si is
a vector of sparse coefficients. Typical choices of dictionaries
would include the wavelet or discrete cosine transform, since
image patches are sparse (or approximately sparse) in these
bases. However, given the inherently non-negative nature of
the data, we impose the constraint that bothA and si are both
element-wise non-negative. With this in mind, we now seek
to minimize the following objective function:

J(A, {si}ni=1) = ‖gi −ΦiAsi‖2 + λ‖si‖1, (2)
such thatA � 0,∀isi � 0,

∀j ∈ {1, ...,K}, ‖A.,j‖22 = 1

where λ > 0 is a sparsity-promoting parameter, A.,j is the
jth column of A, 0 represents a zero-valued matrix or vector,
and � represents an element-wise ‘greater than’ inequality.
This objective function seeks to solve a compressive version
of the popular non-negative sparse coding (NNSC) algorithm
[13]. In this work, we choose K � p2 since a higher K
increases the number of degrees of freedom, and the size of
most available Raman spectral images is usually very small.

We implement the minimization of the function in Eqn.
3 using alternating minimization on the dictionary and sparse

codes, starting from a random non-negative dictionary. Each
step of the minimization is performed using projected gradi-
ent descent with adaptive step-size. That is, the stepsize of
the gradient descent is adaptively chosen to ensure decrease
of the objective function after imposition of all the constraints
in Eqn. 3. The procedure is iterated till convergence, which is
guaranteed due to the biconvex nature of the objective func-
tion. The algorithm is summarized in Alg. 1. Once the indi-
vidual patches hi = Asi are reconstructed, an estimate of H
is assembled by sliding window averaging.

2.1. Dictionary Inference for Regular Sampling

This problem is equivalent to performing super-resolution on
the acquired image. In this case, we do not initialize A ran-
domly. A much better initial guess is required in this case,
because the sensing matrices for applications such as super-
resolution tend to have high coherence with typical dictionar-
ies (due to the regularity of the sampling patterns). Rather,
we first perform bicubic interpolation on the imageG to yield
G̃. We then infer the dictionaryAG̃ from the patches of G̃ by
optimizing the following objective function:

J2(AG̃, {s̃i}
n
i=1) = ‖g̃i −AG̃s̃i‖

2 + λ‖s̃i‖1, (3)
such thatAG̃ � 0,∀is̃i � 0,

∀j ∈ {1, ...,K}, ‖AG̃.,j
‖22 = 1.

This now acts as an initial guess for inferring the actual dic-
tionaryA from H via Eqn. 3.

Algorithm 1 INFERA,S = {si}ni=1 from G

Require: µ,λ,K,p,n,{Φi}N
i=1, ε,α

1: ifG obtained fromH by random sampling then
2: A← random(p2Nλ,K)
3: else

InitializeA = AG̃ inferred from G̃
4: end if
5: S ← random(K,n)

Ensure: A � 0 and ‖Aj‖22 = 1∀j ∈ {1, ..,K} and S � 0
6: Aold ← A, Sold ← S
7: J ←

∑n
i=1 ‖gi −ΦiAsi‖2 + λ

∑K
i=1

∑n
j=1 |sij |

8: while ∆J > ε do
9: A← A− µ(

∑n
i=1 Φt

i(ΦiAsi − gi)sti
10: Set all negative entries ofA to 0
Ensure: ‖Aj‖22 = 1 ∀j ∈ {1, ...,K} andA � 0

11: S ← ((ΦiA)tgi)./((ΦiA)t(ΦiA)si + λ)

12: J ′ ←
∑n
i=1 ‖gi −ΦiAsi‖2 + λ

∑K
i=1

∑n
j=1 |sij |

13: if J
′
> J then

14: µ = µ× α (α < 1 is a reduction factor)
15: A← Aold, S ← Sold

16: end if
17: end while



3. RELATED WORK

There exists relatively less work in the field of compressive
Raman imaging. The work in [14] uses the Coded aperture
snapshot spectral imager (CASSI) architecture [15] for Ra-
man hyperspectral imaging. In this architecture, the light
reflected by the scene of interest is modulated by a coded
aperture and passed through a prism. The modulated and dis-
persed components of light then impinge upon a single 2D de-
tector array which records a snapshot image of the hyperspec-
tral datacube H underlying the scene. The snapshot can be
viewed as a superposition of modulated and spatially shifted
wavelength-dependent slices of H . Multiple snapshots need
to be acquired by changing the aperture code, especially if
Nλ is high. The compressive architecture in [16] computes a
score function at every pixel, i.e. it computes (via hardware) a
dot product between a random binary code and the spectrum
at that pixel. Compared to both these architectures, the pro-
posed architecture if successfully implemented by program-
ming the spectrometer to skip pixels as per a pre-written pat-
tern, has the advantage of simplicity in the hardware as well
as the reconstruction algorithm. Our architecture can be in-
corporated in the point-wise serial as well as snapshot-based
modes of acquisition. The idea of image reconstruction for
grayscale images by skipping random subsets of pixels has re-
cently been successfully implemented using matched wavelet
transforms in [17], where the sensing matrix is termed as
‘partial canonical identity’ (PCI) matrix. However, this idea
is new (and very relevant) in the context of Raman spectral
imaging.

4. RESULTS

We now present our results on real samples for whom we have
acquired Raman spectra using a Horiba Jobin Yvon HR800
Confocal Laser Raman Spectrometer. We performed three
experiments with λ, the sparsity promoting parameter as 2 ×
10−4 and number of dictionary columns K = 12 for each of
these datasets where 20%, 50% and 80% of the total pixels
in the image have been measured. The values of λ and K
have been empirically chosen by cross validation on pure sili-
con datasets. We first show reconstruction results for acquired
spectra of pure silicon (Si), silicon with traces of gallium ni-
tride (Si+GaN) and pure paraffin (Par) with random sampling.
We also present results for structured sampling for Si and Par.
In each case, we present reconstructions for a particular slice
in this paper. In addition, in the supplemental material, we
show reconstructed spectral plots for missing pixels averaged
across a 3 × 3 window, and videos to show reconstructions
over the entire spectrum. We evaluate our results using the
Root Mean Squared Error (RMSE) metric.

Random Sampling: For a pure of size 41× 41 with 226
bands, we encounter a counting time of 2 seconds per pixel,
i.e. an acquisition time of 1 hour. In Fig. 1, we show a

comparison for the original image with the under-sampled
and reconstructed image for different sampling percentages,
viz. 80%, 50% and 20%, at the 128th spectral band (where a
spectral peak occurs). In Fig. 2, we present reconstruction re-
sults for the acquired Raman image of Par of size 51×51 with
208 spectral bands with a counting time of around 20 seconds
per pixel, i.e. acquisition time of 7.5 hours. We show results
for different sampling percentages at the 101st spectral band,
where one of the spectral peaks occur. Similarly, we provide
results for Raman spectral acquisition of Si+GaN which again
takes a per pixel counting time of around 2 seconds, i.e. ac-
quisition time of 3.5 hours. Given the original image of size
41×61 with 179 spectral bands, we present the reconstructed
spectral slice at the 82nd band in Fig. 4. However, the recon-
struction results are inferior compared to the others owing to
the presence of complex textures arising from the distribution
of GaN in the Si sample.

Fig. 1. Top to bottom : 80%, 50%, 20% sampling with
RMSE : 0.07405, 0.08940 and 0.14299 respectively. Left to

right per row: ground truth, randomly sampled and
reconstructed Raman spectral image of pure silicon of size
41× 41× 226 at 128th spectral band. See supp. mat. for

video results.



Fig. 2. Top to bottom: 80%, 50%, 20% sampling with
RMSE : 0.08269, 0.08467 and 0.09388 respectively. Left to

right per row: ground truth, randomly sampled and
reconstructed image of pure paraffin of size 51× 51× 208 at

101st spectral band. See supp. mat. for video results.

Fig. 3. Top to bottom : (a) pure silicon of size
101× 101× 226 at 128th spectral band with RMSE : 0.152
(b) pure paraffin of size 51× 51× 208 at 101st spectral band

with RMSE : 0.103. Left to right per row: ground truth,
structurally sampled with 4th pixel in both directions and

reconstructed image. See supp. mat. for video results.

Fig. 4. Top to bottom: 80%, 50%, 20% sampling with
RMSE : 0.2547, 0.2686 and 0.3359 respectively. Left to

right per row: ground truth, randomly sampled and
reconstructed image of Si + GaN of size 41× 61× 179 at

82th spectral band. See supp. mat. for video results.

Structured sampling: We now show reconstruction re-
sults for Si and Par acquired as before, but for structural un-
dersampling with every 4th pixel measured in both directions.
The results for the pure (101 × 101 × 226) are as follows.
Compared to the image obtained by bicubic interpolation G̃
(RMSE: 0.165) and the image reconstructed from the dictio-
nary AG̃ inferred from G̃ (RMSE: 0.17), we observe a su-
perior performance for the reconstructed image for which A
is further evolved using G with the initial dictionary as AG̃

(RMSE: 0.152). See Fig. 3. Using the same paraffin sam-
ple of size 51× 51× 208, our results demonstrated in Fig. 3
(RMSE: 0.103) outperform bicubic interpolated image G̃ and
that reconstructed usingAG̃ inferred from G̃with RMSE val-
ues of 0.1141 and 0.1145 respectively.

5. CONCLUSIONS

We have presented a method of compressive acquisition and
reconstruction for Raman hyperspectral images, which is very
simple and effective, and can lead to a hardware prototype for
efficient image acquisition. The results are validated on actual
Raman spectral images with a large number of wavelengths at
very low sampling ratios. One important line of future work
will involve development of such a hardware prototype. The
reconstruction algorithm can also be further improved using
deep learning techniques [18] or tensor factorizations [19].
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