
Report draft

Arijit Pramanik

May 12, 2018

Abstract

Given, a boolean formula, generating a satisfying assignment or counting the no. of such
satisfying assignments (referred to as model counting) is of immense interest. However, owing
to computational complexity, since SAT is a NP-complete problem, we are interested in "near-
uniform" or "almost-uniform" generation of a satisfying assignment, as well as approximate
counting of the models (a satisfying assignment). The other part is exploring the use of
Low density Parity Constraints and leveraging counting techniques to make use of pairwise
independent hash functions, and thus explore Average Universal Hash functions. Though a
weaker class of hash functions, they retain the desirable statistical guarantees needed by most
probabilistic inference methods.

1 Introduction
SAT is a NP-complete problem as shown by Cook, and can be reduced to the basic graph coloring
problem, which is coloring each and every vertex of a graph, given some constraints. SAT is
widely employed in model-checking and formal verification for generating test-stimuli based on
a set of constraints. For finding a satisfying assignment for a Boolean formula, DNF can be
converted to CNF in polynomial-time using Tseitin transformation, which is equisatisfiable,
not equivalent(which is otherwise NP-hard with an exponential blowup in the size of variables)
Similarly, although exact counting for DNF and CNF formulae are polynomially inter-reducible,
there is no known polynomial reduction for the corresponding approximate counting problems.

2 Key points
Model counting is the the no, of satisfying assignments to a propositional Boolean formula, sub-
jected to parity or XOR constraints. One of the leading approaches is to use randomized hashing.
Larger constraints involving more than half of the original variables, provide probabilistic accu-
racy guarantees, however, shorter constraints are easier for SAT solvers, though their statistical
properties is not so well understood. Typically, {H1/2

i×n} is used corresponding to XORs, where
each variable is added with probability 1/2 and hence an average length of n/2. Unlike a parity
constraint of length 1, a parity constraint of length k can be propagated only after k− 1 variables
have been set.
Ermon et.al. has proposed that long parity constraints are not strictly necessary, and same accuracy
guarantees can be obtained with shorter XORs. For a formula with n variables, θ(n) constraints are
added and θ(logn) constraint length is necessary and sufficient, over θ(n) constraints in standard
long XORs.
Constant factor approximation : To find approximate solutions to NP-hard optimization
problems, with provable guarantees on distance of returned solution to optimal one. These APX
algorithms find answer within some multiplicative factor of the optimal answer.
Using approximate probabilistic algorithms to compute |S| (set of solutions to a Boolean formula
over n variables) - Partition S into 2m cells, and select a lower dimension cell, and compute whether
there is atleast one element in the cell(query to an NP-Oracle : An Oracle is machine that can
solve a certain decision problem in a polynomial no. of operations). Repeating this for a small no.
of times gives a constant factor approximation to |S| with high probability. We randomly generate
these parity constraints (m parity constraints generate 2m equivalence classes based on whether an
odd/even no. of the subset of variables take the value 1). Equivalently, we can use a hash function
to hash {0, 1}n into 2m hash bins.

1

For the algorithm demonstrated in the paper, we can omit the argument of the family of hash
functions, by randomly generating a i x n matrix A, where each entry is a Bernoulli R.V. with
parameter fi, and b ∈ {0, 1}i is chosen uniformly, at random, independently from A, we generate
the family of hash functions as hA,b(x) = Ax+ b(mod2)
We need the ∆ parameter to get at least 1−∆ bound on probability. We choose a c ≥ 2, and then
uniformly sample α from 2(min(ε, 1/2−1/2c))2ln2 for a 2c+1 approximation of |S| with probability
at least 1−∆. As we increase c, 1/2−1/2c increases, so we might need to fix a suitable, sufficiently
large ε so as to make α independent from ε, and strictly, a function of c.

3 Hash functions
We have already seen model counting and discrete integration techniques that are based on the
universal hash functions and require an NP optimization oracle for decision-making. Construction
of hash functions often utilize modular arithmetic, which maybe interpreted as XOR and parity
constraints in the case of model counting problems. The NP oracle is implemented using a SAT
solver. The new class of Average Universal Hash functions, are statistically weaker than original
ones, and for large-enough sets, size of each hash bucket is sufficiently concentrated around its
mean (these are implemented using LDPC codes).

ε-Strongly Universal hash functions H = {h : {0, 1}n → {0, 1}m} if when h is a hash function
sampled uniformly randomly, then, ∀x ∈ {0, 1}n, the RV h(x) is uniformly distributed in {0, 1}m
and ∀x1, x2 ∈ {0, 1}n, x1 6= x2,∀y1, y2 ∈ {0, 1}m, P [h(x1) = y1, h(x2) = y2] ≤ ε/2m. The case when
ε = 1/2m corresponds to pairwise independent hash-functions where h(x1), h(x2) are independent.

Statistically optimal hash functions can be potentially constructed by considering h to be all possi-
ble functions from {0, 1}n → {0, 1}m, which are fully independent hash functions. However, these
are not space-efficient unlike pairwise independent hash functions are based on modular arithmetic
constraints (XOR constraints) of the form Ax = b mod 2. So, as in week 1, let A ∈ {0, 1}m×n, b ∈
{0, 1}m The family, H = {hA,b(x) : {0, 1}n → {0, 1}m}, s.t. hA,b(x) = Ax+ b(mod2) is a family of
pairwise independent hash functions.
So, we want to look into a very large(high-dimensional) set S by randomly dividing it into cells
using a hash function h, and looking at the properties of a randomly chosen, lower-dimensional set,
h−1(y)∩S. This is utilized in model counting problems by adding to the model a set of randomly
generated parity constraints. Fully independent hash functions are desired but computationally
heavy. There could be high correlation among {h(x)}x∈S , where all the RVs h(x) are identical,
and breaking of S is uneven to the order of a single cell entirely containing S.
We call H : {0, 1}n → {0, 1}m to be universal hash function if for ∀x, y ∈ {0, 1}n.x 6= y, P [h(x) =
h(y)] ≤ 1/2m.

4 Differences between SPARSE-COUNT and ApproxMC

4.1 Overview
SAT solvers are used in both the frameworks where they are fed a set of parity constraints. Longer
parity constraints involve more than half of the variables, and hence shorter constraints are gen-
erally preferred by these solvers. This is intuitively because for a parity constraint of length k, it
can be propagated after all the other variables are set, unlike a single variable constraint, which
can be set right away.

The hash functions that are being used in the ApproxMC framework belong to Hxor(n,m, 3)
(where n is the no. of variables, and m is the no. of parity constraints). Each such constraint
consists of choosing y ∈ {0, 1}n and taking their XOR. Hence, these m parity constraints are used
to break down the solution set S into 2m cells for further analysis. A calculated threshold or
pivot is used to partition a cell further by adding one more parity constraint, if it has more than
pivot elements. Here, we observe random sampling, i.e. each of the n variables are added to the
constraint with a probability of 0.5.

For SPARSE-COUNT, an optimal constraint density f∗ is calculated. Hence, here f-sparse

2

hash functions are used for partitioning S into cells, and check for existence of at least one element
that has a even parity with the sampled hash function, where f∗ dictates the probability of a
variable appearing in the parity constraint. So for each step out of T steps, a hash function is
picked from the family and it is seen how many elements satisfy the original Boolean formula, along
with the sampled hash function. So, SPARSE-COUNT somewhat subsumes ApproxMC
in the sense that putting f∗ = 0.5, we can recover the family of hash functions used
in ApproxMC. So, SPARSE-COUNT provides a trade-off between the quality and
accuracy of the bounds against the computational resources and time.

4.2 Statistical Guarantees
ApproxMC takes as input δ, ε and hence can produce results accordingly, but would require extra
computation time. Here, 1 − δ represents the confidence, and ε represents the margin of approx-
imation. These are required to calculate the pivot. However, SPARSE-COUNT, under optimal
constraint density conditions, produces a constant factor approximation, with a tunable confidence
parameter.

5 Code review

5.1 Methods modified
Originally, the AddHash with added params iterNo and fi function generates a no. of clauses so
that the solution set can be decomposed into cells containing a no. of solutions less than pivot.
Now, it is used to generate i clauses (i is the iteration index) every iteration, which is equivalent
to sampling hiA,b from the family of hash functions Hfi

i×n. For this, two new functions using the
old rd (Random device) has been used.

SetHash added params iterNo and fi is now just used to invoke AddHash,

GenerateBernoulliBits generates Bernoulli bits with parameter fi i × n times, which gives us
the matrix A.
GenerateUinformBits generates integers uniformly from {0,1} using the uniform_distribution<int>
to generate b, independently and uniformly from A.
fact(to be optimized to be tail-recursive) hs been introduced to calculate n!,
choose - calculate

(
n
k

)
,

epsilonEstimate - get the value of ε, as a function of the no. of variables n, no. of clauses m,
q = 2m+2, and fi,
fOptimizer have been introduced to calculate the optimal value of fi for that particular iteration,
with f_initial = 0.5 with a decrease of 0.01 per iteration and decrement of 0.001 per iteration
beyond fi = 0.01, with the bound to check for optimality as 4/(2m+2 − 1),
constant factor approximation c is set to 2.
α is set to (ε)2ln(2) for ε = 3/10 and epsilon = 5/9− 1/2 = 1/18 respectively.

5.2 Modifications to ApproxMC → SPARSE-COUNT
numExplored here is the iteration counter for the main loop, which loop till the no. of variables n.

T < −ceil(log(1/δ)

α
logn). The inner loop loops from 1 till T , where SetHash is called to sample

a hash function using fi = fOptimizer(..). BoundedSATCount(1, solver, assumptions is in-
voked and if it returns a nonzero value, then 1 is pushed to medianComputeList, else a 0 is pushed.

Out of the T iterations, if more than T
2 of the medianComputeList is zero, then the outer loop is

termniated and solCount.finalcellCount = b2i−1c is returned as the final answer.

5.3 Remarks
For the original code, val = 0 has been set to raise error against non-existence of ProbMap_.txt
files in the build directory

3

For the AddHash function, the iteration indices of the inner loop for setting literals was offset by
1, which has been fixed. The Makefile has been modified to incorporate GMP and MPFR

6 References

6.1 Papers
• https://arxiv.org/pdf/1404.6682.pdf

• http://proceedings.mlr.press/v32/ermon14.pdf - SPARSE-WISH algorithm

6.2 Additional Reading
Abstract

We have a high-dimensional discrete set χ = {0, 1}n and its underlying probability distri-
bution. We embed the set onto a higher dimensional space and randomly project it onto a
lower-dimensional space and leverage combinatorial optimization tools for sampling.

6.3 Brief introduction
We have a weight function, w(x) : IR→ IR, from which we calculate its probability by normalizing
the weights, using the partition function Z. We might also consider factor graphs, which are useful
for performing Variable Elimination and Belief Propagation in Bayesian Networks. Now, we want
to (approximately) sample from p(x).

• We generate p′ from p, where the new weight function now takes only a discrete set of
geometrically increasing weights, which calls for discretization into disjoint buckets, Bi =
{x|w(x) ∈ (M

ri ,
M

ri+1)} while the last bucket (say lth) bucket is Bl = {x|w(x) ∈ (0, M
rl

)}.

• From p′, a new probability distribution p′′ is defined over a higher dimensional embedding of
χ, from which sampling is performed.

• We indirectly sample from p, by uniformly sampling form p′′ (i.e. project the embedding into
lower-dimensional subspace, using universal hash functions.

So, this reduces the weighted sampling problem to that of solving the MAP query and a polyno-
mial number of feasibility queries. We effectively want to reduce this weighted sampling problem
to uniformly sampling from a higher-dimensional discrete set where χ is embedded.
We define the embedding S(w, l, b) of χ in χ× {0, 1}(l−1)b where w is the weight function, l is the
no. of buckets, and b = log2

r
r−1 . We include tuples of {x, y11 , y21 , ..., yb−1l−1 , y

b
l−1}, where for each

i ∈ {1, 2, ..., l− 1}, w(x) ≤ M
ri ,
∑b

k=1 y
k
i ≥ 1. Let p′′ denote a uniform probability distribution over

S(w, l, b).
We constrain the space using the family of universal hash functions, search for P "surviving"
configurations, and if lesser than P survive, we use the statistical method of acceptance-rejection
sampling, to choose one of them. Combinatorial optimization is used to choose the maximum
weight M through MAP inference. P is a no. chosen since it is a base case, where we know how to
produce uniform samples via enumeration.

7 Brief overview of PAWS algorithm
First, we want to compute k, the no. of constraints/factors(which encodes a randomly chosen hash
function) to add. The hash function is similar to what we used in SPARSE-COUNT. We perform
this for T trials, until we get lesser than P surviving configuration for more than half of those
trials, or we have performed the experiment of T trials, n′ times.

In the PAWS procedure, we perform a MAP inference to get the maximum weight. We also
perform a higher-dimensional embedding of χ, increasing its dimension by (l− 1)b, and the no. of

4

constraints included in the randomly sampled hash function is k+α. , where we uniformly sample
Am and c where a hash function as we studied earlier, is Ax + c(mod2). We can then use the
NP-oracle, to check all {x, y} s.t. hiA,c(x, y) = 0. If the set is empty, or has more than P distinct
"surviving configurations", then we return bottom. Now we want to uniformly choose one of the
configurations by acceptance-rejection sampling using uniform sampling.

5

	Introduction
	Key points
	Hash functions
	Differences between SPARSE-COUNT and ApproxMC
	Overview
	Statistical Guarantees

	Code review
	Methods modified
	Modifications to ApproxMC SPARSE-COUNT
	Remarks

	References
	Papers
	Additional Reading
	Brief introduction

	Brief overview of PAWS algorithm

