Automated TimeTable
(Generation

Arijit Pramanik
December 31, 2016

Contents

1

Introduction
1.1 Generation approach 0.

Description of Genetic Algorithms

2.1 Actual Algorithm
2.2 Biological analogy
INSTRUCTIONS and INFO
3.1 The main function
3.2 breedcolony.
3.3 The Three Musketeers : Repair Strategies
3.4 inmitialisecolony oo
3.5 find_averagecost L oL
3.6 calculate_cost
3.6.1 Unavailability 0oL
3.6.2 room_mismatch and room_affinity
3.6.3 related classclash
3.6.4 room too small and room_compat
3.6.5 lecturer_double booked
3.6.6 lecturer-overtime
3.6.7 subjects_per-week
3.6.8 class_continuityo oL
Database
4.1 Logistics
4.2 Tasks

Code Optimisation

Limitations

w w W

~ S OO UL UL O UL O U R

~

1 Introduction

TimeTable generation has been a problem for institutes across the world. Though
manual generation is within human capability, given resources are ample, you
should try to go with the automated version as you save your computation time
and have a sample space of possible optimized such timetables to choose from.

The approach taken up is a go-back approach. You make mistakes and correct

them as you repent for them. Same goes for your life too :).

1.1 Generation approach
APPROACH : Genetic Algorithms

The approach that we have taken takes in all the input and then it has all
the requisite constraints that are pre-fed. So, the algorithm generates random
timetables with some sort of prior repair strategies and then the constraints are
deployed on them which gives them costs. You continue generating timetables
so as to narrow down your sample space and get the optimal solution.

Note that you may have multiple optimal solutions but the algorithm gives you
one as it stops as soon as you get one. Not satisfied.... Run it once again
and keep doing it until you get your desired output which you think suits your
college the best.

2 Description of Genetic Algorithms

We evolved from apes..... nope from Archaebacteria.

2.1 Actual Algorithm

So we generate three random numbers: a random day ranging from 0 to number
of working days-1, a random slot from 0 to number of slots -1, a random room
from 0 to number of rooms -1. So you have many subjects(say z) and a subject
can have many classes scheduled (say y). So the random generation which takes
place for the timetable schedules these zy classes or lectures in these slots(from
1 to ay).

Now you have generated these arbitary timetables. Then you breed them and
consider it to be biparental (As we considered here... you can change it by
changing the cross over rate variable in breed_colony function). Then you get
children timetables and they get some of their mother timetable traits and some
of their father timetable traits.

Then the child test_tube undergoes various tests. If it has less errors which
are measured by costs and weights, then it becomes part of the population
called solution colony. In this way, we take genrated timetables, calculate their
costs, and maintain a population of three timetables which have the lowest
costs among all the generated timetables. The solution colony now consists of
three timetables as the population_size has been kept at three which has by far
produced the fastest timetables.

2.2 Biological analogy

Human children are produced by the cross over of two parents. So it is bi-
parental.. the same as our algorithm. Human population has an upper cap
....its fixed(say). So if the population is more than 9 billion, ISIS takes them
away and kills them. Similarly, if we have more than three timetables in our
solution_colony, then we kill off the costlier timetables and keep the lower cost
ones. If the child born is imperfect, then he/she is killed, else if it is healthier and
has better survuval abilities than its parent, it lives. The test_tube timetable
created from two parent timetables is discarded if its cost is more than parent
timetables. The population size is such that evolution is the fastest and stable.
So the population size has a fixed optimal value. Mutation takes place as in
modern days and hence timetables have randomly shuffled slots...so that who
knows by a mere lucky shuffle you get the correct one in a single shot. Just as
mutation can sometimes give you superhuman abilities like the X-Men, but may
kill you through cancer..if its not favourable. So the timetable may get accepted
into the population if mutation yields a lower cost or killed off and discarded if
its cost is higher.

3 INSTRUCTIONS and INFO

You might wanna check inputformat.ods

3.1 The main function

e you have the change the name of the input file here from where the inputs
are to be read.

e you can decide at which cost of the optimal timetable you would stop by
manipulating the maximum allowed cost. Again, I suggest 0.

e initialise_constraints will initialise the input file.

e find_average_cost will again calculate that whether the population from
which you got the timetablw was highly optimised or not. Its just a
measure so no fuss regarding that.

e breed_colony will breed the timetables and generate the army of timetables
having a population size of 3 which is the value we have used

3.2 breed_colony

The function will take randomly two timetables from three and label them as
father and mother. The function will randomly take few slots from mother
timetable and few slots from father timetable and calculate the cost of the child
timetable. It compares the cost with the previous members of the population
and inserts in in the appropriate place and discards the rest. The solution_colony
has timetables sorted in the order of costs.

No need to manipulate any parameters here also.

3.3 The Three Musketeers : Repair Strategies

e the repair_strategy actually allocates classes to all slots for each and every
room for all the classes for each subject. It may allocate them 0 or multiple
times.

e the repair function deallocates those slots which are out of purview of the
course working hours or if the particular subject has zero affinity towards
the room. So bookings are just cancelled.

e the repair_strategy_0 actually ensures that each and every class is allocated
precisely once. It checks for how many times classes have been allocated
and hence takes prompt action to book the classes if not booked earlier.

3.4 initialise_colony

This function generates the random timetables. Initially, all the slots are avail-
able. This function makes use of repair_strategy_0 to book each and every class
exactly once since bookings are all null or 0 times for all classes when timetable
with all slots free is generated.

3.5 find_average_cost

You might want to know which population is better. All nations have its best
swimmers: Phelps for USA and Sun Yang for China and others. But you might
want to know whether as a bunch, USA swimmers are better than the chinese
swimmers, so you need to evaluate their population traits. So this function is a
measure whether the population has all optimised timetables or some are not.
If the average cost is low, then the optimised timetable comes from a superior
breed.

P.S. Of course, USA is much better.

3.6 calculate_cost

This calculates the cost of the individual timetables...
Dude, remember to assign weightages for each of the constraints.

3.6.1 Unavailability

For lecturer, room and obviously course, you supply the time_slots as and how
you like but using hh:mm format with start and end time seperated by spaces.
Enter however many time slots you want and corresponding matrices are gen-
erated automatically.

3.6.2 room_mismatch and room_affinity

Certain infra of room needs to be present. We have incorporated lab and pro-
jector so farand it schedules classes accordingly. For more infra, you can assign
weightages to each of the components, create a room infra and decide which
room is most suitable for each class in an order. Zero would mean strict denial
for that room for a particular class.

3.6.3 related class clash

This gives the number of instances that the different classes of the asme subject
are scheduled in the same slots in different rooms.

3.6.4 room too small and room_compat

room too small gives the number of such cases the strength of the class is more
than the capacity of the room which they are allocated.

room_compat will not schedule a class of lower strength in a class with very high
capacity if a room with a lower capacity is already available in that slot.

3.6.5 lecturer_double_booked

Gives us those cases where the same lecturer is given the same slot for different
classes in different rooms....Basically can’t take more than one lecture at a time
3.6.6 lecturer_overtime

This will check whether a lecturer is scheduled or alloted more number of hours
of lectures than he is supposed to take in a week as well as for each day.
3.6.7 subjects_per_week

This makes sure and gives us those instances when a lecturer devotes lesser time
to a subject than he should have done in a week(or the entire semester. You
can change accordingly). Input is in hours of lectures.

3.6.8 class_continuity

This checks whether classes in a timetable can be scheduled by minimising the
free available slots between them. It makes sure that students have classes in
continuation..and do not have to wait longer for classes to finish because of no
classes for them in between. This is implemented course-wise.

4 Database

InnoDB was the internal storage engine used on our PHP.

4.1 Logistics

e upload lecturer, classes, room data onto db.
e optimised timetable is uploaded onto db.

e create free slots will tell us the availability of slots to be used when the
courses have been finished or not. The duration field for each of the classes
will tell us its duration in the input file.

e Make changes in db for the various properties of classes : it may get over
while the semester is in full swing, the lecturers might change on any arbit
day of the week, etc.

4.2 Tasks
To add courses in the zth week
o firstly fetch the (z-1)th time table data

e Add the new courses in the free slots of the timetable taken care by the
code. I might say that make the lecturer availability in the previously
scheduled classes prior to new courses zero so that the algorithm can’t
even think of using those slots. Lecturer_unavailability is a huge must-be-
followed constraint.

e Upload the updated timetable in the db

5 Code Optimisation

Intense profiling on Netbeans has been done and rest assured that the code
is more than moderately optimised. You need to dig through enough to find
out the creeks where the control flow wastes its time. You should aim for the
functions listed inside breed_colony function.

6 Limitations

e We had achieved a peak speed which had been demonstrated, but following
certain changes instructed to us, it was not possible to maintain the superb
optimisation characteristic of a student of the glorius CSE dept. of IITB.
But , however, profiling of the code will be submitted and done as much
as possible so that someone might speed things up a bit.

e Still now, class_continuity and room_affinity are not working in full swing.
They will fail in corner cases, but you won’t come across such institutes
too often. They often mess up the code and as constructed statistically,
slows down code and may enter into a never ending loop.

e The dynamic database could not be presented. The current one just takes
in the various data objects and displays correctly only for the first input.
Only god knows what would happen if second inputs are provided. It
is completely possible that you might get the correct desired timetable.
Week-wise, but not day-wise changes could be incorporated.

