
Report : Exploring Figaro

Arijit Pramanik

December 9, 2018

Abstract

Figaro is a probabilistic programming language that is built as an embedded library on
Scala, which is a Turing-complete language and makes use of both the functional and the
object-oriented programming paradigm.

1 Introduction to Figaro
Figaro helps in modeling probabilistic relational models. Considering the model of a simple
coin toss, we have a random variable that models the outcome, by assigning a value 1 when heads,
and 0 when tails. This outcome has an associated probability distribution, namely, Bernoulli dis-
tribution with parameter p describing the fairness of the coin.

val coin = Flip(0.4) // coin is biased towards Tails

The constructs of Figaro are heavily used to model Bayesian and Markov networks which
are used heavily in the field of Artificial Intelligence today for inference modeling.

1.1 Brief Recap on important Scala concepts
• Traits : Similar to abstract classes in Java, these encapsulate field and method definitions,

which can be reused by other classes. However, unlike class inheritance, a class can inherit
any number of traits.

• Case classes : Scala provides support for case classes, which do not need any instantiation
with the new operator and the object construction is carried out by the default implicit apply
method

• Lazy evaluation : Scala defers time-consuming computation until it is strictly required by
another method in the program, which helps speed up computation.

• Type inference : Scala is a strongly-typed static language and hence there are no run-time
ambiguities regarding type, and the type of all variables/values can’t be substituted and are
determined at compile-time.

• Immutability : All variables with keyword val are immutable by default, while those with
keyword var are mutable by default. This is similar to the immutability of records in Ocaml

• Object-oriented paradigm : This allows Scala to treat functions as objects and hence can be
passed around the program. A singleton static object can be used to instantiate the whole
program

• Others : Scala has features like higher-order functions and curried functions, with improved
concurrency control. It also supports linear pattern-matching like Ocaml

1.2 Basic Figaro constructs
Monad : A Functional programming concept that defines a data type, and how the values of
that data type are combined; functions that use those data type, and compose them together into
actions, following the rules defined on those data types.

1

Figaro extensively uses the probability monad, which builds the computation from values to
the probabilistic models built on those values. A Monad uses a type constructor with type M to
convert a value of type a to a Monadic value of type (M a) and puts it into a container. We can
analogously say that :

• Monadic unit := Constant. e.g. Constant(1.0) generates a probabilistic model that always
returns true with a probability 1

• Monadic bind := Chain. Chain[T, U] helps model the conditional distribution of the child U,
T => Element[U] given the distribution of the parent, T, Element[T] e.g. Chain(Flip(0.7),
(b: Boolean) => if (b) Constant(1); else Select(0.4 -> 2, 0.6 -> 3)). This will
choose the first clause with a probability 0.7 and the second one with a probability of 0.3

• Monadic fmap := Apply, leverages Scala functions operating on values to Figaro elements.
e.g. Apply(Select(0.2 -> 1, 0.8 -> 2), (i: Int) => i + 5) yields 6 with a proba-
bility of 0.2 and 7 with a probability of 0.8

• Monadic containers := Process. The general trait of Figaro collection is a Process, which
represents a possibly infinite collection of random variables. It is a generalized mapping
from an index set to an element. map and chain use the default constructor to generate a
new Process or collection of Elements. e.g. p.chain(Normal(_,1)) will produce a new
collection in which every element is normally distributed with mean equal to the value of the
corresponding element in the original process.
p.map(_> 0) will produce a Process[Int,Boolean] mapping every element in the existing
container to False

Apart from the monadic constructs defined above, Figaro provides some syntactic sugar which
makes it easier to define the probabilistic relational models. These are :

• Conditions : This helps us to assign certain outcomes which violate the specified condition
attached to the random variable, generated by the probability model with a probability 0.
e.g. val x1 = Select(0.1 -> 1, 0.2 -> 2, 0.3 -> 3, 0.4 -> 4)
x1.setCondition((i: Int) => i == 1 || i == 4). This assigns a probability value of
0 to the other outcomes 2 and 3, while the probability of outcomes 1, 4 remain 0.1 and 0.4
respectively

• Constraint : These are functions which map the Values to Doubles. The probability of partic-
ular outcomes are multiplied by the specified weights and then re-normalized which helps to
model the bias of a distribution towards specific outcomes for random variables. e.g. val x1
= Select(0.1 -> 0, 0.2 -> 1, 0.3 -> 2, 0.4 -> 3) x1.setConstraint((b: Boolean)
=> if (b) 1.0; else 0.1). This enforces that the outcome 0 is ten times more likely com-
pared to the other outcomes.

• Universe : A universe is a collection of elements, on which the given reasoning algorithm
operates. In case of a dynamic model, a static universe can model the intrinsic property of
the elements itself, while a dynamic universe (creating a new universe at each time step)
updates the current properties of the model adhering to the invariants specified in the static
universe. Subsequently, elements in a universe can be activated or deactivated depending
on whether we want to run an inference algorithm on them. e.g. a valve‘s condition can be
specified using its intrinsic property of failure of the material in a static universe, and its
condition can be updated at each time step by creating a new universe

Abstract classes, class inheritance and addressing objects by reference are used heavily by Figaro
from Scala, to model the relationships between different classes representing related entities

2 Analysis of the language constructs
An Element is the core component of a probabilistic model. Elements can be understood as defin-
ing a probabilistic process. Elements are parameterized by the type of Value the process produces,
e.g. Element[Int] or Element[Double]. Comprising of a random as well as a deterministic
component, the generateRandomness method samples random values from the given probability

2

distribution. The generateValue generates an output value given the randomness. Atomic ele-
ments extend the Atomic[T] trait, since they are independent of other variables. Similarly, for
continuous probability distributions, these generally extend the Continuous[T] trait.

Similarly, ElementCollection[T] is a trait, which refers to a collection of elements and can be
used to reference them, and is by default extended by the Universe. Similarly, Evidence is asserted
using a sealed abstract class, along with other basic constructs like Flip, Chain, Constraint,
Parameter(for learning) and Pragma(for abstraction)

2.1 Reasoning Algorithms
Figaro provides for computing the conditional probability of query elements given evidence (con-
ditions and constraints) on elements. An important part of this is evidence, which describes all
the observations that have been made about the model. Evidence can refer to constructs like
setCondition, setConstraint or observe. This can also make use of inbuilt references in Scala
to associate evidence with an object. The reasoning algorithms provided are :

• Variable Elimination : This is an exact inference algorithm and hence requires the universe
to remain finite upon expansion. This converts the elements into a set of factors, and applies
variable elimination to each of the factors

• Belief Propagation : This is an approximate inference algorithm for continuous random
variables, but exact for discrete random variables. This also expands the universe, and
converts variables into factor nodes, and operates on message passing between the factor and
variable nodes.

• Lazy Factor Inference : Sometimes, the model may not be finite and the inference may involve
an infinite no. of variables, in which case Figaro performs a Lazy factor inference that creates
a factor graph of finite depth, and performs inference on this graph, while accounting for the
effect of the unexplored portion of the factor graph.

• Importance Sampling : This can be applied to a universe whose expansion is not finite, but
the number of elements generated is finite.This works on the simple approach of sampling
and accepting the value if it satisfies the condition, and otherwise rejecting it, and taking
into account the weight of the sample in case of a constraint.

• Markov Chain Monte Carlo methods : Consists of the Metropolis-Hastings and the Gibbs
sampling methods. These basically propose a new proposalScheme, i.e. a new proposal
distribution for randomness at the beginning of each iteration, and it accepts or rejects the
samples according to that. This involves the nextRandomness method of Element[T]

The query interface provided by Figaro comprises of probability of the outcome of the inferred
variable, probability that the outcome satisfies a particular predicate, and calculating the expected
outcome given some function on the outcome. e.g. ve.distribution(e2), ve.probability(e2,
predicate), ve.expectation(e2, (b: Boolean) => if (b) 3.0; else 1.5)
Since, it is difficult to work with continuous values, Figaro provides for various schemes of selecting
out a set of abstract points given a set of concrete points belonging to the probability distribution.
These can be specified by addPragma method

Figaro also provides for LearningParameters, which can be learnt by using learning algorithms
and only EM algorithm is provided as default for this purpose. This initalizes random estimates
for parameters, tries to set weights for them in the expectation stage using the likelihood of data
given parameter and tries to maximise the likelihood of the parameter by tweaking these weights in
the maximization step. This converges to the maximum a-posteriori value of the parameter, which
represents the maxima of the posterior distribution. However, Figaro only provides for the Beta
and Dirichlet distributions as conjugate priors so all kinds of random variables entailing different
distributions can’t be learnt so easily using data.

3

3 Extending the language
Figaro provides immense flexibility in the sense that, random variables and associated probability
distributions can be modeled by inheriting the base class Element[T] and more complex distri-
butions can be modeled by extending pre-existing classes with different traits like Atomic[T] and
Cacheable[T]. e.g. AtomicUniform distribution can be defined with the trait Atomic[T] since it
is an independent atomic element and does not depend on any other elements.

Similarly, Figaro provides a number of inference algorithms. All the inference algorithms inherit
from the Algorithm class, which define the basic framework for starting, stopping and killing the
algorithm, and the default methods for initialize and cleanup can be over-ridden for book-
keeping purposes. The algorithm can be defined for a fixed number of iterations or can run as long
as required.

3.1 Defining a new Atomic Class
I have implemented a new Atomic class which inherits from Element[T] as do all other classes for
sampling from the Uniform or the Gaussian distribution. There is a default uniform distribution,
which inherits from AtomicUniform class and maps every element to a probability value of 1.0 im-
plying that every element is equally probable. My class models a sampling algorithm of generating
a number of random values uniformly and returning the maximum of them.
Scala has an inbuilt random number generator which by default, generates numbers between 0 and
an upper bound, sampling them from a uniform distribution. Extending from the abstract class
Element[T], generateRandomness samples a number of values between 0 and upper bound spec-
ified, into a List[Int]. Here the randomness is of type Int. Finally, generate method returns
the maximum from the list of sampled integers.

Different test suites are available for testing the randomness of the generated integers, includ-
ing the chi-squared test, which can be easily tested on statistical software, such as R.

3.2 Creating a new Compound class
Similarly, new classes can be created which are compound, in the sense that they are comprised
of dependencies among atomic elements, We can inherit from the Chain class, which takes in
a sequence of Elements and values are randomly sampled for each of those options. Then the
AtomicUniform distribution can be invoked over all the values sampled, and then the resulting
value can be chosen uniformly. Here, we have the parent elements as Atomic elements which
have their own distributions from which random values are sampled, and then, the child uniform
distribution is conditioned on the values of the parents.

3.3 Analysing and building a new algorithm
Every algorithm requires a list of target query elements and the universe. It consists of expansion
to include in all possible elements, for building the factor graph and the sampling method, where
algorithms can choose to extend default samplers. In the case of extending an abstract class, we
provide a companion class using factory constructors. However, the traits for the anytime version
and the fixed iteration version are different. So, a customised algorithm must extend the Algorithm
trait, and then the fixed iteration or anytime trait, and over-ride the sample function if required.

4 Evaluating the language
I have tried out a couple of examples, some of which have been written from scratch, while others
have been extended from the given examples. Some of the demonstrated examples are :

• An example involving car engines which uses an abstract class to model an engine. The
three different engine versions inherit from the superclass Engine, which is an abstract class,
so that can’t be instantiated. Here, we also create objects of these engine classes and define
a child variable engine, depending on the power of the engine using the CPD construct.
A Markov network is also defined which allows us to model the manufacturer bias among

4

the engines, and hence, we can now set constraints between different engine versions. We
also record our observations in the form of conditions on the engine random variables. Then
we run an inference on this above defined model to infer some probability queries regarding
the different engine versions using 20,000 samples of the Metropolis Hastings algorithm.
This is not an exact inference algorithm, and hence doesn’t provide an exact same answer
every time, but provides a value within 0.01% of the actual theoretical value. Using Variable
Elimination on the speed variable, conditioned on the engine, we query the expected value
of speed of the car, and obtain an exact answer for the same since the factor graph for this
Markov Network is finite and this is an exact inference algorithm. Here, an extension was
implemented for the Metropolis Hastings algorithm since we can define the proposal scheme
for this algorithm, or use proposalScheme.default

• A simple example involving a Bayesian network was tried out using different random
variables involving calculating of the probability of wet grass, which depends on rain and
sprinkler operation, which in turn depend upon the rainy season. Here, along with simple
query inference, the learning algorithm leveraging Expectation Maximization was tried
out, where data was provided in the form of a Scala sequence. Here, we learn the probability
of observing wet grass given the observations made on the wet grass. The learning algorithm
involves Belief Propagation which is required to estimate the sufficient statistics corre-
sponding to the distribution, which is used by the learning algorithm in the sampling step.
e.g. mean are variance are sufficient statistics for the normal distribution

• A problem modeling the evolution of three valves in time was explored which uses case classes
and subsequently case objects in order to model the valve states. This uses a dynamic
reasoning algorithm, which is FactoredFrontier, and the only default one provided by
Figaro. Here, the case objects do not need instantiation and can be accessed anywhere inside
the singleton class. We explore the use of creating new universes, and using references from
other universes, in this inference algorithm, which works only on factors instead of sampling.
Here, a static universe is modeled upon the intrinsic property of failure of the valves, and
then we have that, a universe is created dynamically at each time step to model the state of
the valve with time. This algorithm also internally uses Belief Propagation. We then run our
queries as per the default interface provided by Figaro to infer about the valve states for the
valves in our model. This however works at each iteration and provides an exact accurate
answer for each time step

• A decision making problem has been modeled using Figaro, which involves a market with
different values for the current market status. Then, a survey random variable has been
created, which is conditioned upon market and models the perception of different people
regarding the current market status. A utility function is specified which evaluates the
decision taken, given the current market status. Figaro provides a decision variable which
consists of a set of actions and a random variable of which it is a child. Figaro provides a
DecisionVariableElimination, which provides the most optimal decision, given the utility,
and sets that using the setPolicy method. We can also extend this to a multiple decision
problem, via which we can also explore further objects and class relationships provided by
Scala.
Other examples have been also been written to show the effectiveness of LazyVariableElimination
and lazy evaluation provided by Scala while modeling relations between different classes which
have fields dependent on one another.

5 Shortcomings of Figaro
I noticed that the Bayesian networks that are generally used for modeling is kept simple since
inference on a huge model can be computationally expensive. Figaro utilises this fact and CPD
for a child can’t be defined with more than 5 parents. This is the default for the CPD construct in
Figaro. RichCPD which allows a much more flexible decision also allows only 5 parents though it
does not inherit from CPD. Similarly, the Apply function defined in Figaro, can not be applied on
more than 5 instances of Element[T]. Since, for every Element defined, this function is implicitly
applied to the list of arguments passed, we have that the CPD construct, which uses this, can’t be
applied to more than 5 parent elements.

5

The Scala scope and Figaro scope of objects are not the same. It tries to make heavy use of implicit
arguments and conversions. Since, traits are used for instantiation, so arguments required to be
declared at instantiation time require more user effort.
Additionally, since the universe has a lot of random variables, it needs a lot of data structures to
keep track of them for inference algorithms running on the universe, so it is not much memory-
friendly

6 Conclusion
Figaro is open source, Scala library where one can create probabilistic models with little AI and
ML experience, using the power of recursion in Scala and Chain in Figaro. Figaro is a language
and platform with which one can explore new types, paradigms and ways of building probabilistic
models. Object-oriented programming is used to build these models, so maybe we can use this in
Java, but the functional aspects of Figaro makes using it much easier.

6

	Introduction to Figaro
	Brief Recap on important Scala concepts
	Basic Figaro constructs

	Analysis of the language constructs
	Reasoning Algorithms

	Extending the language
	Defining a new Atomic Class
	Creating a new Compound class
	Analysing and building a new algorithm

	Evaluating the language
	Shortcomings of Figaro
	Conclusion

