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Abstract. The chatbot is based a information retrieval system which specialises in

domain knowledge and is well-acquainted with general conversations also.

1. Aim of the Project

The objective of this project is to build a conversation engine, which is supposed to

be acquainted with various queries from the consumers related to a particular product.

Our aim is to build the querying system based on the user manual of the respective

product.

2. Use Case

The principal use case employed for testing is the Sonicare Diamond Clean 300

Series toothbrush manual, though other manuals related to the air-fryer and Philips

shaver have also been tried out.

3. Query System

3.1. Training the chatbot

First of all, the chatbot is trained on four corpuses, namely being:

• Output.txt (a stemmed version of the manual with each sentence on a new line and

devoid of any punctuation and stopwords)

• Topic1.txt (file which contains the list of all topics, stemmed and devoid of

punctuation and stopwords corresponding to the list of all relevant topics with

each one on a new line)

• Text8Corpus (This has been stemmed and stripped off stopwords and is a general

text Corpus)
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• BrownCorpus (This is NLTK’s general text corpus which also has been thoroughly

stemmed and stripped off stopwords)

The parameters need to be manually fine-tuned, namely size (set to the total number of

topics), window is the distance upto which other adjacent words should be considered

to be in the same context. The learning rate and number of epochs may be set to the

default value itself. ‘min count’ indicates the minimum number of occurrences of a word

to be included into the vocabulary.

3.2. Preprocessing of question

Any question entered via the user interface, is stemmed (refer to SnowBall Stemmer)

and stopwords are removed (stop.txt is the list of stopwords). All punctuation is removed.

The words are then corrected in case of spelling errors (big.txt is intended for this

purpose for the list of domain-related words)

You can include special words which will not be stemmed or corrected for spelling

errors in donot.txt

3.3. Finding the most relevant topic

A list of topicsis passed by the knowledge engine and the most relevant topic is selected

by the algorithm. It enters yet another sublist of topics under the former and same is

recursively applied until the most relevant topic (or subtopic) is found.

The response from the knowledge base might be the answer pertaining to the rele-

vant topic found or a list of subtopics out of which there is no clear answer or a response

declaring the irrelevance of the question to the given list of topics.

A Sentiment Analyser deployed, checks for the user satisfaction of the answer and

returns the next most relevant response pertaining to the user’s question.

The chatbot has limited domain capabilities and it reroutes the question

to an AIML engine which engages with the user in real-time in case the

question is not restricted to the domain.

3.3.1. Semantic matching Gensim library is used for initialising the word2vec model,

where each word is converted to a vector form. In this model, a text (such as a sentence

or a document) is represented as the bag (multiset) of its words, disregarding grammar

and even word order but keeping multiplicity. The bag-of-words model is commonly

used in methods of document classification.

Tf-idf Vectorisation is useful for marking the important (less-frequent words)

without having any bias for longer documents. The inverse document frequency
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is a measure of how much information the word provides, that is, whether the term is

common or rare across all documents. Term frequency is the raw count of a term

in a document. This gives weights to the words and hence a corresponding normalized

vector is generated which works better than the boolean vectors in bag-of-words model.

Latent Semantic Indexing is a technique used for analyzing relationships

between a set of documents and the terms they contain by producing a set of concepts

related to the documents and terms. LSA assumes that words that are close in meaning

will occur in similar pieces of text.

Latent Dirichlet Allocation is a generative probabilistic model for collections of

discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in

which each item of a collection is modeled as a finite mixture over an underlying set of

topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of

topic probabilities. In the context of text modeling, the topic probabilities provide an

explicit representation of a document.

3.3.2. Similarity measures The similarity measures employed work on the underlying

dot product of the vectors representing the words. Thus, this is the cosine similarity of

two words. Using n .similarity of gensim, we apply this measure between the question,

and the list of topics at that hierarchical level. The returned list is sorted by this

similarity value.

Other measures include the Jaccard distance, Word Mover’s Distance. The Jaccard

coefficient measures similarity between finite sample sets, and is defined as the size of

the intersection divided by the size of the union of the sample sets. WMD is a method

that allows us to assess the ”distance” between two documents in a meaningful way, even

when they have no words in common. It uses word2vec vector embeddings of words.

Both of these were implemented and the results led to lesser accuracy than the cosine

similarity measure.

The similarity measure of gensim doesn’t work well for synonyms, but well enough for

cases like: ‘woman’ + ‘king’ - ‘man’ = ‘queen’

Alternative libraries like Spacy also have a similar feature of detecting re-

lationships in a better fashion, but is outwitted by gensim’s optimisation of

using C++

3.4. Analysis

Three models have been implemented so far to reply to consumer queries.

(i) QnA : The first model simply works on a Tfidf model. The list of topics from the

knowledge base at the specified hierarchical level are transformed via a vector-to-

keyword mapping after being pre-processed (stripped off stopwords and stemmed,

while preserving proper domain words like ‘sonicare’ and ‘philips’ ). Then, the tfidf

transformation is applied. The same preprocessing and transformation occurs to
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the question, resulting in a vector. The cosine similarity measure between the

vectors helps us list out the most relevant topics.

(ii) QnA2 : The second model is a combination of four models. Both LSA and LDA

models are employed. The first two models are trained on the pre-processed list of

topics while the latter LSA and LDA models are trained on a pre-processed corpus

of the manual and the list of all relevant topics in the manual. The question is pre-

processed (textitlemmatized) and MatrixSimilarity of the in-built similarities

class is used to index the pre-processed query and return the list of relevant topics

accordingly.

The corpus of the manual, list of topics and the question are all subjected to the

Tf-idf transformation, LSI and LDA transformations on the former and the

latter.

(iii) QnA3 : The word2vec model of gensim has been trained on all four corpuses

mentioned. The model is initialised with the manual text via the LineSentence

constructor, and further vocabulary and training is done on the other models. The

query, pre-processed as before is passed to gensim’s n similarity function which in

turn ranks the topics in order of their relevance scores.

The “$” functionality can be used to resolve contexts by emphasizing on a particular

set of words that are believed to bring clarity to the context. Please just add a “$”

symbol as prefix to the words that are deemed important.

3.5. Reflections and Future Work

The last model in general, has greater accuracy and points to the incorrect answer in

case the keywords lie deep in the hierarchical model. This can be improved if the XML

document is made more carefully, under supervision of domain experts. The second

model gives relatively lower scores than the former, and hence the thresholds have to be

readjusted. The first model works relatively well, but only when keywords are present

in the question.

Dynamic thresholding can be used to resolve clear conflicts in deciding the most

relevant topic. Currently, these are hardcoded values. Moreover, the XML document

should be created in a well-formatted style so that traversing the tree is well-guided by

the topic headers.

3.5.1. Synonym Engine Various libraries are out there in python which can give words

similar to a particular word. Spacy provides a list of most similar words which can

be filtered accordingly as per the vocabulary available. Other available packages are

Wordnet, Pydictionary.
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4. Sentiment Analyser

The library that has been deployed is NLTK’s vader. It has already been pre-trained

on movie reviews, semantic lexicons and emoticons. The polarity score returns a

dictionary of compound, positive, negative and neutral values. If the compound value

is greater than 0.5, then it carries a positive sentiment. If it is less than -0.5, then it

carries a negative sentiment. Else, it is classified as neutral.

4.1. Emotions Classifier

The list of emotions present are the Ekman’s six basic emotions : Happiness, Sadness,

Surprise, Fear, Disgust, Anger and an additional emotion, Love; except the fact that

Interest is included instead of Disgust.

The corpus essentially consists of movie reviews found online and have been anno-

tated for the emotions they exhibit. Each review is followed up by a list of seperated

emotions while being followed by None if there are no emotions exhibited. The set of

emotions is automatically gathered from the reviews. One annotated review from the

corpus is listed for reference:

“There is some spectacular, heart stoppingly beautiful photography here of a range of

scenery and animals, from arctic to tropical and everything in between.->Love Surprise”

Given a suitable corpus, to effectively split it for training and testing, run split-

train test.py to test the accuracy of the classifier, which given the current corpus of

500 reviews arising from 7 movies, stands at 40.4%. The metric used for assessing this

is scikit-learn’s metrics.accuracy score.

The classifier used for this approach is a OneVsRestClassifier. The estimator for

the above is a LinearSVC Since each review can have multiple labels, this is a multi-

label, multiclass classification problem. We use a MultiLabelBinarizer to transform

the labels of a review into a boolean vector. A self-written functon, arijit score is being

used as a measure of false positives returned by the classifier. TfidfVectorizer is used

on the training and test data to remove all stop words, and an ngram-model is used

which resorts to unigrams and bigrams only.

GridSearchCV in scikit-learn can be used as a tool to find out the parameters

for a given classifier that best fits the data. Currently, the best-fit has been obtained

by fine-tuning it manually.

4.2. Sentiment Plotter

For tracking the sentiment changes across replies of a user in a chatbot-enabled response

system, this can be a useful tool for the summary.
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The chunk of text (review) is taken as input from a file and decomposed into sentences.

Each sentence is tested for a sentiment value, which lies between -1 and 1. The

immediate sentiment values are plotted with a black line and the cumulative sentiment

values with a red line. If the red line peaks above the baseline, then the review is a

positive one, else generally the red line sloping downwards is an indication of a negative

review.

4.3. Analysis and Reflections

The accuracy of this classifier may be improved using other classifying estimators other

than LinearSVC, like Logistic Regression, RandomForestsClassifier and fine-tuning via

GridSearchCV.

The corpus should also be improved in terms of the number of available training

instances from a reliable source of movie reviews.

5. Ontologies and RDF

To convert any .rdf file in RDF/XML format to N-Triples format and vice versa, use

http://rdf-translator.appspot.com/ It also supports other formats like Turtle and N3.

The advantage of the RDF format is that we can use SPARQL to query with

specified graph structure to match graph pattern of given RDF to find out the unknown

variables (e.g. ?city). The queries are of four types:

(i) SELECT simply returns data matching some conditions (a graphical pattern)

(ii) ASK queries check if there is at least one result for a given query pattern. The

result is true or false.

(iii) CONSTRUCT queries returns an RDF graph that is created from a template

specified as part of the query itself.

(iv) DESCRIBE queries returns an RDF graph that describes a resource.

N-Triples format advantage : Is of the form Subject-Predicate-Object. This is In-

tuitive and similar to the subject, predicate and object of an english sentence. The

three types of objects can be URIRef, Literals (Strings and integers) or BNodes (Blank

nodes identified by any alphanumeric string beginning with : with some restrictions)

RDFLib is a useful python library for parsing RDF files.

RDF Validator (W3C) can be used to validate rdf documents in xml format :

https://www.w3.org/RDF/Validator/rdfval (It can also be used to visualise the RDF

graphs).

An illustration as to how blank nodes can be useful: SPARQL queries for blank

nodes:

SELECT ?a ?b WHERE ?a :predicate [ :otherPredicate ?b ] .

equivalent to:
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SELECT ?a ?b WHERE ?a :predicate :blankNode . :blankNode :otherPredicate

?b .

It is very difficult to convert N-Triples to english sentences and vice versa : NLTK

parsers use subject-verb-object structure which is not very helpful. Dependency

parser of SpaCy can be helpful in visualising the structure and dependencies of a

sentence. You can analyse the intended subject, object and predicate of the sentence.

Stanford’s Protege is a GUI based tool than uses the OWL API and can be used

to create RDF files in an OWL format which is almost similar to RDF files and can be

queried using SPARQL. OWL files are a bit compact compared to those in RDF/XML

format. It requires an underlying base OWL file which serves as the template for the

RDF file being created. We can create new properties as a subproperty of Thing in Data

Properties. The objects in that file can be instantiated by creating new objects under

the Individuals tab. Then, we can save it in the required format, preferably RDF/XML.

5.1. Exploring additional features

Some key plugins that might be useful in generating ontologies:

(i) XML2OWL : Can be used to generate ontologies out of XML files. Mappings are

carried out according to user-provided rules, and result in new individuals and

axioms in the ontology.

(ii) XML Tab : The XML Tab enables users to import an XML document into Protege,

creating a set of classes and instances in a knowledge base which correspond to the

entries in the XML document.

(iii) Excel Import : Import content and generate classes from Excel or CSV files. Provide

rules to create restrictions between columns.

5.2. Making a sample ontology via Protege

• Firstly, you have to select some IRI for your ontology, some resource URL that you

yourself own, e.g. http://localhost:9004/myontology/

• Secondly at the bottom of the screen, use the option import ontology, to select an

ontology template to be used as the backbone framework, e.g. FOAF (friend of a

friend) ontology can be imported from the web.

• Next, decide upon the prefixes which will appear adjacent to the ‘Import Ontology’

tab. For example, you may use foaf as https://xlmns.com/foaf/0.1/

• You can also create new data properties as subset of the property:Thing and specify

its type, like its Range(e.g. Literal) and its type whether its an Agent(standard

property type of FOAF)

• Now you can click on the Individuals tab at the top and create new individuals.

Whenever you create one, don’t forget to specify its type (e.g. Person), and other

data properties like name, surname, birthday, skype ID, etc. (As occurs in FOAF)
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• Lastly, save this in the format that you want using Save As. RDF/XML format is

the default format that appears, but the file is created as per the OWL ontology

format.

For more details, refer to : https://www.youtube.com/watch?v=leO7 ZonbQ&t=9s
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