
SpongeKV: A memory efficient learned indexing technique
for LSM key value stores

Arijit Pramanik
University of Wisconsin-Madison

Nithin Venkatesh
University of Wisconsin-Madison

ABSTRACT
Log structured merge trees have grown in importance as
the back-end data structure for data management systems.
LSM trees store data in disk-backed files which consist of
key-value (KV) pairs in sorted order and with non-overlapping
KV pairs except at the very first level on disk. The files
consist of indexing structures for faster block-by-block data
retrieval. In this work we study the various indexing tech-
niques used in RocksDB, a widely used LSM based key value
store and show how learning techniques can be used to de-
crease the memory footprint of the index without compro-
mising latency.

1. INTRODUCTION
Key value stores are used for widely varying storage use

cases in data centers and cloud environments, like storing
application metadata which are required frequently for dif-
ferent cloud microservices. They have also been used as the
back-end storage engine for databases. For example, Inn-
oDB, MyRocks are used as the storage backend for MySQL.
Today, we see a new class of stateless relation databases like
TiDB which provide the abstraction for relational data but
convert tuples to internal key-value pairs stored in the un-
derlying key-value store.

RocksDB is an open source key-value store from Face-
book developed as an extension to LevelDB initially devel-
oped by Google. RocksDB internally uses Log structured
merge (LSM) trees which differ from other indexing struc-
tures like B-Trees. The basic idea of LSM trees is to have an
in-memory data structure for absorbing the incoming writes
which are batched and later written to persistent storage in
the form of a structure called SSTables. SSTables contain
entries i.e. key-value pairs in sorted order which would help
in faster reads and scans, using binary search or even faster
using hash indices. Absorbing write bursts in memory and
periodically migrating them to persistent storage helps these
key-value stores provide very high write throughput and low

.

Figure 1: Write and Read paths in an LSM tree
based key value store

write latency.

1.1 Working of an LSM-tree key value store
As shown in Figure 1, the main data structures that are

used in an LSM tree based key value store are the Memtable
and SSTable (Sorted sequence table). Memtable is typi-
cally a B-Tree, skip list or a hash table data structure that
is used to store the incoming writes in memory after the
writes are synced to an append-only log for durability and
crash consistency. SSTables are the data structures that
are used to store data on the disk. They consist of key
value pairs organized into data blocks with delta encoding
for efficient storage. This implies that a common key pre-
fix across a group of keys is stored with only subsequent
differing portions stored for remaining keys. The block-
partitioned format is common for block-based storage me-
dia, while a contiguous plain-table format works well for
in-memory databases. After the Memtable reaches a cer-
tain preset size threshold, it is converted to an immutable
SSTable file and flushed to disk.

LSM key value stores organize data into multiple logical
levels. For example, RocksDB and LevelDB have 7 levels by
default. The maximum amount of data that can be stored
at a level is given by a predefined threshold (10(level)MB by
default for RocksDB) except for level 0 which can store a

1

maximum of a specified number of SSTables on disk.

Write path : When the put or the write call for a key-value
pair is made on the database, the KV pair is appended to
a write-ahead log and then inserted into the memtable data
structure in memory. The writes continue till the memtable
reaches a particular size of 4 MB. Once the size is reached,
a new in-memory memtable is created to absorb the writes
and the previous memtable is converted to an immutable
version before being flushed as an SSTable to level 0 of the
on-disk LSM tree.

Compaction process : Based on whether the number of
files in level 0 is above a compaction threshold or if the data
at a particular level exceeds the specified value (typically

10(level)MB), a background compaction process is triggered.
The compaction process is used to remove the duplicate and
deleted entries corresponding to a key by keeping only the
most recent version for a given key. The compaction pro-
cess chooses a particular level to carry out the compaction
process. For each file in the chosen level, it looks for files
in level + 1 which consist of overlapping keys. If such a
file is found, then these files are combined using a technique
similar to merge-sort and the newly formed file is stored
at level+1 and the file at compaction level is deleted.

Read path : If a read or get request is issued for a key,
first the in-memory memtable is searched to see if the key
exists. If so, then the most recent version of the key and
the corresponding value is returned. Else, the LSM tree
levels are searched starting from level 0. At level 0, each
SSTable is searched one by one for the key and the most
recent version is returned if that key is found in level 0.
Else, the key is searched in other levels. Now, since the
SSTables in the other levels are sorted and are disjoint, the
search can be performed efficiently. Bloom filters, binary
search and regression techniques are used to efficiently carry
out this search without excessive disk reads. An additional
hash index can also aid in quick search at some extra space
overhead.

Once the SSTable likely to contain the key is determined,
the corresponding index block which is typically stored in
memory is consulted to find the data block inside the SSTable
that contains the key and only that particular data block is
read to avoid excess reads. Once the data block is read, we
do a binary search over all its entries to find the required
key. A data block can also have an additional hash index
which allows constant time lookup of its constituent keys.
We will go into more details of this process in Sec 2.

For efficient lookup, the index blocks corresponding to
each SSTable file in an LSM key value store are cached in
memory. RocksDB partitions main memory into BlockCache

for storing these data blocks and TableCache to cache the
index and filter blocks, but memory can be highly contended
for large database sizes.

2. BACKGROUND AND MOTIVATION
As seen in 1.1, the memory footprint of index blocks can

be significant, affecting the performance of the key-value
store. The index blocks might compete with the data blocks
for DRAM thereby leading to poor cache hit rates and hence

poor performance. With decreasing DRAM to SSD ratios,
this problem is exacerbated. At higher cost per byte for
DRAMs, reducing the memory footprint without mitigating
performance can be a huge benefit for today’s cloud data
centers. In this work, we look at the memory footprint of
the indexing techniques used in LSM based key value stores
and explore ways to reduce the memory footprint of the
index blocks.

2.1 A case study of TitaniumDB
Key value stores are increasingly being used in cloud and

on campus cluster environments. An example of a dis-
tributed cloud-based relational database is TiDB, built on
top of LSM-based key value store RocksDB as the storage
engine. Our analysis and methods are not limited to this
specific use case but the application serves as a good exam-
ple to illustrate the problem of memory overhead for index
blocks.

Figure 2: Working of TiDB, and relational database
on LSM based key value store RocksDB

TiDB [2] is an open source NewSQL database that sup-
ports HTAP workloads and provides horizontal scalability,
strong consistency and high availability using back-end key
value stores, thereby providing the abstraction of a state-
less relational database on top of key value stores. The
high level working of such a system is as shown in Fig 2.
Users submit SQL queries, to TiDB, the corresponding tu-
ples are converted to key value pairs, which are replicated
using a consensus algorithm like Raft, and then stored on
each TiKV node running the RocksDB key value store.

The keys are encoded in Memcomparable[1] and then the
hexadecimal strings are sent to the RocksDB key value store
in the back-end. The encoding for table data into corre-
sponding key value pairs is shown in Table 1. The size of
keys thus formed can vary from a few bytes to hundreds of
bytes. This can have an adverse effect on the index data
since, the index entries store the block offsets corresponding
to the last or the first key of each data block in a SSTable
file. Larger keys can lead to the index data occupying more
of DRAM. The fact that data block sizes can be variable

2

Data type Key Value

Table row t{tableID} r{rowID} [col1, . . . , coln]
Primary key/ t{tableID} i{indexID} rowID
unique index indexedColumn(s)Value

Secondary key/ t{tableID} i{IndexID} NULL
non-unique indexedColumn(s)Value

index {rowID}

Table 1: Format of key value pairs stored in TiDB

incorporates additional metadata overhead of storing their
individual sizes. Note that data blocks are individually com-
pressed and their sizes are required for efficiently iterating
over the data contents of the data block.

The need for reducing the memory footprint of LSM based
key value stores as expressed by database administrators :
“It should be several percent of the data size. Assume index
and bloom filter blocks are all cached, and we have memory
being 5 percent of data size, then we have little to no memory
to cache the data. And we are thinking push the data density
further to like 1-2 percent of data size (e.g. 64GB memory
per TiKV node with 4TB data each). And it would help a
lot if we can minimize the index size.”

2.2 Indexing techniques in RocksDB
Some general space optimizations for constructing indices

involve shortening the key being stored. Suppose last key of
ith data block is a and first key of (i + 1)th data block is b,
then we seek a key [a, b) with the shortest length and store
the same as the index entry. E.g. ”12” can act as an index
entry for ith data block ending in ”1000” while the next data
block begins with ”1348”. Similar savings can be achieved
for the last key of the last data block in an SSTable. Index
entries can also be delta-encoded. Suppose, we have the fol-
lowing keys as index entries : ”100101”, ”100152”, ”100223”
and ”100289”. We can simply store ”100101” and note that
the common prefix across these 4 keys in ”100” (i.e. first 3
bytes), and subsequently store ”152”, ”223” and ”289” for
the remaining 3 keys.

The index blocks are generally not compressed. Also, if
we increase the size of each data block, the number of index
entries decrease, but the trade-off here would be fetching
large data blocks into memory for single key (point) lookups.
Since fewer such blocks can be stored in memory, this may
lead to thrashing (continual eviction and re-fetching) in case
of widely ranging random key lookups. This also amplifies
the problem of memory fragmentation.

• Single level index : For each data block, we store the
last key as the corresponding index entry along with
the size and offset of the data block. As seen in Fig
3, we have keys ranging from 3 to 5 bytes and value
being 1 byte, KV-pair offsets range from 4 to 6 bytes.
For the 3rd data block containing ”01111”, ”012” and
”020”, its corresponding index entry is ”020” stored
alongside its starting offset of 25 within the SSTable
file and its size 4+4+6 = 14 bytes. Note that the keys
are strings sorted lexicographically.

Figure 3: A single level index structure in RocksDB

• Partitioned index : The index block above is stored
as a single block and needs to be fetched entirely for
reading the corresponding SSTable file. Since SSTables
can be as large as ≈ 100 MBs, index blocks can easily
be ≈ 100 KBs. So, we partition the index block into
fixed-size blocks and build another index on top. For
every read, we fetch the top-level index corresponding
to each SSTable and accordingly fetch the required in-
dex block for the data block lookup to reduce the foot-
print of cached index blocks. As shown in Fig 4, we
have 2 2nd level index blocks with top-level index hav-
ing 2 entries corresponding to the first index entry for
each of those blocks. We also store the offset and size
of the index blocks, each being a 4 bytes long integer.

Figure 4: Partitioned / two-level index in RocksDB

As can be seen above, the single-level indexing strategy
has higher memory footprint for random key lookups span-
ning multiple SSTables, while the partitioned indexing strat-
egy might end up with increased latency for some reads due
to an additional indirection for demand fetching of the sec-
ond level index blocks. If we start caching the 2nd level
index blocks, then our memory footprint might exceed that
of previous strategy since the cumulative size of index blocks
across both levels can be much larger. In order to reduce
the memory footprint of indexing while not affect-
ing the read latency, we turn to learned techniques for
indexing.

2.3 Learned indexes
B+ trees are widely used in today’s databases for fetch-

ing records. The index is traversed by searching for keys at
each level and finally reaching the leaf node which contains
a pointer to the desired record. This incurs an O(logn) time
complexity and can be slow if there are too many index en-
tries for today’s petabyte-scale databases.

A learned model can be used to enhance/replace tradi-
tional indexes. Since CPU-SIMD/GPUs are common today,
training such ML models is computationally cheap. Predict-
ing the position given a key inside a sorted array implies ef-
fectively approximating the cumulative distribution function

3

(CDF). Hence, indexing literally requires learning a data
distribution and if appropriately estimated, reduces storage
requirements to the weights of the model. Such learned ap-
proaches can also be used to replace Bloom filters. We can
also organize these models in a tree-like structure, termed
Recursive Model Index so that each can focus on certain
subsets of the data.

Figure 5: Working of learned indexes as a replace-
ment to traditional indexes

Given the prediction (offset, errmin, errmax) = model(key),
this reduces lookup time to O(1) by searching in (offset -
errmin, offset + errmax) interval as shown in Fig 5. Though
this works well for reads, updates are hard to implement
since the model needs to be re-learned, which can be a sig-
nificant overhead if updates are frequent. Since in our case
SSTables once built are immutable and serve only reads, the
learned index fits our goal very well.

3. DESIGN FOR LEARNED INDEXES
We demonstrate some simple statistical models to approx-

imate the distribution of <keys, offsets> as we learn a model
to predict the data block inside which a given key occurs and
do a (binary) search after fetching it to get the correspond-
ing value. As SSTables are created during compactions in
Sec 1.1, we learn the starting keys of each block and corre-
sponding block offsets for all data blocks within the file. We
term this as file-based learning and is triggered whenever
compaction creates a new SSTable. The models are stored
along with the SSTable in place of the index and gets deleted
along with it during compaction. Since the lifetime of SSTa-
bles at higher levels on disk (L2 onwards) are pretty high,
these models are relatively stable and server lookups faster.

Both our regression methods involve learning lines with
slope a and intercept b such that it minimizes the least
squares error

∑n
i=1(yi − (axi + b))2 for n < xi, yi > data

points corresponding to <keys, offsets>.

3.1 Greedy Piecewise linear regression
The <keys, offsets> being sorted by key will be non-

decreasing, but may not be linear. So we fit a series of
line segments. We fix a specified error threshold for initi-
ating a new line segment. We can control the number of
data blocks that need to fetched and searched for a given
key. E.g. an error value in (min KV-pair size, max block
size] will lead to fetching 2 data blocks in the rare case that
the search interval straddles across the boundary between 2
data blocks, even if as small as 24 bytes though typical block
sizes are 4 KB. Algorithm 1 run in O(n) time for n keys. A

dynamic programming approach runs in O(n3) time, but re-
quires specifying the number of segments before hand and
makes several passes over the data to find the best bound-
ary points. Since this runs for every compaction, this can
potentially stall writes as memtable gets full and is unable
to flush to disk due to all threads being involved in long-
running compactions.

Algorithm 1: Greedy piecewise linear regression

Data: < x1, y1 >,< x2, y2 > , < xn, yn >, err

a1 =
y2 − y1
x2 − x1

, b1 =
y1x2 − x2y1
x2 − x1

, last start = x1;

segments = {}, prev seg =< x1, a1, b1 >;
for i = 3 to n, k = 0 do

if |(prev seg.ak ∗ xi + prev seg.bk)− yi| > err
then

add < last start, ak, bk > to segments;
last start = xi;

ak+1 =
yi+1 − yi
xi+1 − xi

;

bk+1 =
yixi+1 − xiyi+1

xi+1 − xi
;

prev seg =< xi, ak+1, bk+1 >;
increment k by 1;

end

end
Result: < s1, a1, b1 >, . . . , < sk, ak, bk >

Figure 6: Fitting simple and piecewise linear regres-
sion to predict block offsets from the key’s integer
value. ”004”, ”020” are encoded as 4, 20 respec-
tively. Encode last key ”8110” as 81 to save space.

In single-level and partitioned index, we stored sizes and
offsets for each data block. But now we can estimate offset
using our learned model. So, we only store the sizes for each
data block. Following the same example in Fig 3 and 4, we
illustrate the index block in Table 2. Previously, number of
index entries was the same as number of data blocks = 5.
But now using our regression techniques, we can approxi-
mate the distribution of offsets and store only the starting
key, slope and intercept for each segment where number of
segments = 3 is generally much lower than number of data
blocks = 5.

To lookup a key, we simply do a binary search in the
list of segments and using the corresponding segment, we
get the predicted offset as (slope×key + intercept). Using
the preset error bound, we now fetch all data blocks whose
starting offset lies within (offset - error, offset + error) to
lookup the KV pair.

4

Start key Slope Intercept

”004” 2.167 13
”040” 0.292 27.29
”9” -1 -1

Data blk # Size

1 13
2 12
3 14
4 12
5 9

Table 2: Index block for greedy PLR. ”9” is a
dummy key larger than all keys in SSTable to bound
our binary search within the set of segments

3.2 Simple linear regression
If we use the above approach but approximate using a

single line, then we need to execute the model for every key
and remember the worst over and under prediction of an
offset to calculate the min and max error bounds. This can
be quite large and we might need to fetch too many data
blocks in memory, significantly increasing the read latency.
The algorithm 2 for fitting a single line segment to the set
of <keys, offsets> is computationally quite simple and runs
in O(n) time.

Algorithm 2: Simple linear regression

Data: < x1, y1 >,< x2, y2 > , < xn, yn >

a =

∑n
i=1 yi

∑n
i=1 x

2
i −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

;

b =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

;

err = 0, offset preds = {};
for i = 1 to n do

err = max(err, |(a ∗ xi + b)− yi|);
add < xi, (a ∗ xi + b) > to offset preds;

end
Result: < x1, a, b >, err, offset preds

So, instead we store the offset predictions of the start-
ing key of each data block and given any key for lookup,
we compute its predicted offset as a× key + b and do a bi-
nary search over the list of offset predictions to find
the exact data block in which the key resides. The offset pre-
dictions for data block starting keys are strictly monotonic
irrespective of the underlying key distribution. This ensures
that only a single data block is read for every key lookup.
This is close to being pareto-optimal, since we achieve lower
latency with significant space savings in terms of index foot-
print as evaluated in Sec 5. Hence, this outperforms tradi-
tional indexing strategies in terms of memory-latency trade-
off for LSM KV stores. To the best of our knowledge, this
is a novel technique of storing the output of a simple lin-
ear regression model at regular intervals based on memory
availability to narrow down the search space.

As seen for greedy piecewise linear regression in Table
2, number of segments can be large for small error bounds
especially when data block sizes are small. For simple linear,
we actually need to store only a single segment to predict the
offsets for keys and then do a binary search within the list of
offset predictions for each data block, which involves a larger
search space than the list of segments previously, but the

Start key Slope Intercept

”004” 0.607 6.761
”9” -1 -1

Data Size Pred
blk # offset

1 13 4.104
2 12 9.796
3 14 13.438
4 12 25.578
5 9 31.648

Table 3: Index block for simple linear. ”9” is a
dummy key larger than all keys in SSTable to bound
our binary search within the set of segments

logarithmic increase is insignificant. Table 3 shows the index
block. Say, we want to lookup ”007”. The model will predict
an offset of 7 × 0.607 + 6.761 = 11.01 ∈ [9.796, 13.438). If
its offset is smaller than the start key of data block 3 while
being larger than that of data block 2, then it has to be in
data block 2 which can be verified from Fig 3.

4. IMPLEMENTATION
We implement greedy piece wise linear regression and sim-

ple linear indexing strategies as part of RocksDB. As ex-
plained in section 3, we learn an index model corresponding
to a SSTable file on-the-fly during compaction. We tem-
porarily store the keys being inserted to an SSTable during
compaction in a container-like list or vector and use this for
further processing. For simple linear regression model, we
use the closed form equations to estimate the slope and in-
tercept given a set of keys and their offsets. For the greedy
PLR model, we start with a pair of keys, and greedily add
keys until the predicted offset for the keys added to the cur-
rent line segment exceeds the given error bound as demon-
strated in Algorithm 1. The implementation for greedy PLR
is the reference implementation as presented in the Bourbon
[5] paper.

RocksDB uses two types of caches in memory apart from
the OS-managed page cache. Block cache is used to cache
the data blocks but can be configured to cache the index
and filter blocks as well. Table cache is used to prefetch
the index and filter blocks into memory when a SSTable file
is opened. For the partitioned indexing strategy, only the
top level index blocks of the SSTable files are prefetched
into the table cache and the second level index blocks are
loaded to the block cache on demand. For the other indexing
strategies, single level indexing and the newly implemented
learned techniques, we prefetch all the indexing data to the
table cache whenever an SSTable file is opened.

Both block cache and table cache use a generic LRU cache
mechanism to promote and evict blocks and files respec-
tively. By default the table cache is configured to support a
specified number of files and when the number of files exceed
the said threshold, the least recently used file is evicted. We
modify this strategy to evict the files based on a preset ca-
pacity threshold (in bytes) on the table cache. So, for a read,
when an SSTable is opened and read to the table cache, the
size of its index and filter blocks is added to the table cache
size, if the table cache size exceeds the set capacity thresh-
old, then the least recently used file is evicted.

5

The learning strategies are implemented in a separate
module and other learning based techniques can be easily
integrated with slight modifications. These are currently
implemented for the block-based format for SSTables.

5. EVALUATION
We use the Intel (R) Xeon (R) CPU D-1548 @ 2.00 GHz,

x86 64 with 16 cores and 64 GB RAM on Cloudlab corre-
sponding to the type m510 for our experiments. For all the
experiments shown in the figures below, we load 10M key
value pair with varying key sizes and a value size of 100
bytes. We measure the memory requirements and average
read latency as perceived by the client for the traditional and
the learned indexing strategies. For simplicity and to show
the effectiveness of the learning strategies in reducing the
memory footprint of indexing, we disable the page cache,
block cache and filter blocks for the experiments. Note:
Block cache is enabled for partitioned or two level indexing
as it only uses the block cache for storing the second level
indexes. For the other indexing strategies, the index data is
stored as part of the table cache.

Figure 7: Memory reduction using learned tech-
niques as compared to the traditional indexing strat-
egy for key size 8B and value size 100B

Figure 7 shows that the cache hit rate for both the greedy
PLR and simple linear indexes reach to 100 percent with the
cache size being 0.3 percent of the DB size whereas single
level reaches a 100 percent hit rate when the cache size is
0.54 and since the partitioned index uses block cache and
not table cache for caching, and the index blocks compete
with data block for cache space, the cache hit rate for the
index blocks does not reach 100 percent even when the cache
size provided is more than the space that is required to fit
all index blocks. The cache memory requirement for single
level indexing is 0.47 percent of the DB size whereas it is
around half at 0.27 and 0.24 for greedy PLR and simple
linear indexing techniques. We also observe that, we are
able to reduce the memory requirement for indexing using
the learned techniques without compromising on the average
latency as shown the first graph in figure 7.

Figure 8: Memory reduction using learned tech-
niques as compared to the traditional indexing strat-
egy for key size 16B and value size 100B

In order to see how the memory requirements for the in-
dexing strategies change as the key size is increased, we in-
crease the key size and run the experiments. Figure 8 shows
the average read latency, cache hit rate and the cache mem-
ory requirements for the indexing strategies. We observe
that the memory requirement as a percentage of the DB
size for greedy PLR and simple linear techniques decreases
as compared to key size of 8B while the ratio increases for the
single level and partitioned indexing strategies. The cache
memory requirement with key size of 16B and value size of
100B for greedy PLR, simple linear, single level and par-
titioned indexing techniques are 0.26, 0.23, 0.62 and 0.63
percent of the DB size respectively. We also observe that
simple linear regression based indexing is able to achieve
less average read latency as compared to the other index-
ing strategies due to lesser evictions when the memory is
scarce. When sufficient memory is available for all the index-
ing strategies, the simple linear regression based technique
utilizes the minimum amount of DRAM while providing la-
tency similar to other techniques strongly suggesting the
use of learned techniques, especially simple linear regression
based indexing for LSM key value stores.

Figure 9: Memory reduction using learned tech-
niques as compared to the traditional indexing strat-
egy for key size 32B and value size 100B

We observe similar trends increasing the key size further.

6

Figure 9 shows the average read latency, cache hit rate and
cache memory requirement for keys size 32B and value size
100B. The cache memory requirement to DB size ratio fur-
ther decreases for the learned indexes at 0.25 and 0.2 percent
for the greedy PLR and simple linear regression models as
compared to 0.68 and 0.69 for greedy PLR and simple linear
regression techniques. Also, simple linear and greedy PLR
techniques achieve less latency compared to the traditional
techniques.

Figure 10: Memory reduction using learned tech-
niques as compared to the traditional indexing strat-
egy for key size 64B and value size 100B

For key size 64B and value size 100B, difference in the
cache memory requirement for learned strategies and tradi-
tional strategies further increase. Greedy PLR and simple
linear methods require 0.24 and 0.17 percent of the DB size
simple and partitioned indexing strategies require 1 and 1.02
percent of the DB size respectively.

5.1 Greedy PLR index memory footprint with
varying error bounds

Figure 11: Average latency and memory require-
ment with varying error bounds for greedy PLR in-
dexing technique

Figure 11 shows how the how the memory requirement
for the greedy PLR indexing strategy decreases as the er-
ror bound is increased. The size of a data block is 4KB,
and we vary the error bound from 400B to 2KB and record

the observations. An error bound of 400B means, during
the process of greedy PLR training, if the offset predicted
varies from the correct offset by more than 400B, then a new
line segment is created, which leads to more segments and
hence more memory requirement. We observe that, cache
memory requirement is around 0.39 percent of the DB size
at 400B error bound and this reduces to 0.27 percent for
2000B as the error bound. Correspondingly, the average la-
tency increases as the error bound is increased since more
than one block (two blocks in this case) have to be read
for a higher percentage of reads. This indicates, that one
has to carefully choose the error parameter in case of greedy
PLR based learned indexing strategy. Tuning this param-
eter might be hard without proper analysis. Simple linear
regression, on the other hand has no parameter to tune and
provides a simple, both memory and performance efficient
alternative to the traditional indexing strategies in memory
constrained LSM key-value stores.

6. RELATED WORK
Characterizing, Modeling,and Benchmarking RocksDB Key-

Value Workloads at Facebook by Cao et al. [4] presents a
characterization of workloads from RocksDB production use
case at Facebook. They show that the distribution of the
keys and values are highly related to the use case and they
show that access to the key values have good locality and
follow certain patterns.

Bourbon by Dai et al. [5] based on improving Wisckey
[8] explores how to reduce the read latency by introducing
piece wise linear regression for constant time lookup of the
key in an SSTable of the LSM tree. They also develop a cost-
benefit analysis to decide when it is advantageous to build
the linear model for an SSTable based on the average lifetime
of SSTables. However they only support fixed size integer
keys and show the benefits of using learned techniques when
most of the data can fit in memory. In this work, we have
showed that learned indexes can achieve comparable read
latency even when the data is stored on disk while incurring
significantly less memory cost.

Reducing DRAM footprint with NVM in Facebook [6]
presents one the first NVM based key value stored deployed
in production. They aim to reduce the total cost of owner-
ship of their MySQL cluster based on MyRocks by reducing
the DRAM footprint for caching while maintaining com-
parable mean latency, 99th percentile latency and Queries
per second. They build MyNVM as a replacement to My-
Rocks using the main idea of using higher NVM capacity to
counter reduced DRAM memory. They show that they are
able to obtain similar performance using 16GB DRAM and
140GB NVM in place of 96GB DRAM. They also show how
to counter the NVM read bandwidth bottleneck using the
partitioned indexing strategy discussed earlier.

Learned indexes for a Google scale disk based database
[3] presents a study emphasizing the practicality of learned
indexes structures in real systems like Bigtable. The mo-
tivation here is to reduce the index memory footprint for
Bigtable. They use simple linear regression to decide the
block number for a given key value pair, which can lead to
non-uniform block sizes. We use a complementary approach
of storing the output of simple linear regression model for

7

block boundaries and ensure that the block sizes remain uni-
form. Non uniformity in block sizes can lead to more than
one block being read for read operation since they do not
align on page boundaries.

LSM trie [9] observes that small key value pairs are com-
mon in production key value stores. For example, in a Face-
book key value store, 90 percent of the key value pairs are
less than 500B. They observe that large index set leads to
read degradation with index spilling out of memory. They
propose a novel compaction design to reduce write ampli-
fication and eliminate index using LSM trie, compromising
range query support. They cluster on disk bloom filters for
efficiency.

In the case for learned index structure by Kraska et. al.
[7], they present that most of the traditional index struc-
tures can be replaced by other models including deep learn-
ing models which they term as learned indexes. They show
that, by using neural networks, they are able to outperform
cache optimized B-Tree index by up to 70 percent in speed
thereby saving an order of magnitude in memory over several
real world datasets. We draw inspiration from this in look-
ing at how learned indexing can be used to reduce memory
footprint for LSM tree based key value stores.

7. CONCLUSION
As modern cloud infrastructure is moving towards server-

less computing and key-value stores are rapidly being used to
store application-critical metadata across thousands of mi-
croservices, it is of critical importance to reduce the storage
overhead of these backend KV stores. Newer technologies
like NVM are seeing lesser and lesser DRAM being used
inside cloud datacenters which calls for stricter bounds on
storage for the index and metadata structures on DRAM as-
sociated with key-value stores. Even if sufficient memory is
available, administrators want to utilize it for caching data
blocks instead of indexing metadata. With the economies
of scale at play, simple ML models like linear, polynomial
regression can alleviate much of the storage requirements
of indexes in modern key-value stores. With modest com-
putational overheads for training, these can be integrated
into today’s key-value backed databases without compromis-
ing service-level agreements while providing a much lighter
memory footprint.

8. REFERENCES
[1] https://github.com/facebook/mysql-5.6/wiki/myrocks-

record-format.

[2] https://github.com/pingcap/tidb.

[3] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi,
L. P. Doshi, T. K. Kraska, X. S. Li, A. Ly, and
C. Olston, editors. Learned Indexes for a Google-scale
Disk-based Database, 2020.

[4] Z. Cao, S. Dong, S. Vemuri, and D. H. Du.
Characterizing, modeling, and benchmarking rocksdb
key-value workloads at facebook. USENIXFAST, Feb.
2020.

[5] Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. From
wisckey to bourbon: A learned index for log-structured
merge trees. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages
155–171. USENIX Association, Nov. 2020.

[6] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe,
S. Dong, K. Hazelwood, C. Petersen, A. Cidon, and
S. Katti. Reducing dram footprint with nvm in
facebook. EuroSys, 2018.

[7] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures.
CoRR, abs/1712.01208, 2017.

[8] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Wisckey: Separating keys from values
in ssd-conscious storage. USENIX File and Storage
Technologies, Feb. 2016.

[9] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: An
lsm-tree-based ultra-large key-value store for small data
items. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 71–82, Santa Clara, CA,
July 2015. USENIX Association.

8

	Introduction
	Working of an LSM-tree key value store

	Background and Motivation
	A case study of TitaniumDB
	Indexing techniques in RocksDB
	Learned indexes

	Design for Learned Indexes
	Greedy Piecewise linear regression
	Simple linear regression

	Implementation
	Evaluation
	Greedy PLR index memory footprint with varying error bounds

	Related Work
	Conclusion
	References

