Introduction to Artificial Intelligence - CS3243 - National University of Singapore
21 - 04 - 2018

Tetris Agent Implementation

Niklas Funk (A0178864J), Madhav Goel (A0179262X), Arijit Pramanik (A0179365N),
Simon Schaefer (A0179799U), Svilen Stevanof (A0179092W) - GROUP 33

Abstract

This report is about the challenge of
designing an utility based agent which can
maximize the number of rows cleared in
the game of Tetris. We achieved the best
performance using a genetic algorithm but
also present other approaches.

1 Introduction

The game of Tetris has seven distinct block shapes
(Tetraminos), which can be manoeuvred by translation
or rotation. The ultimate goal is to place the Tetraminos
such that the number of cleared rows is maximized and
that, in theory, the game never terminates.

The Tetris game is fully observable since the complete
board is known at any point in time. It is sequential and
static, as the orientation of Tetraminos merely changes as
a consequence of the player’s moves. The game is discrete
as it acts in a discrete 20x10 grid. Though each action
is deterministic, while the choice of the next Tetramino
is randomly distributed over all seven shapes.

The next player move can be determined using a utility
based agent. Its utility function is a weighted sum of dif-
ferent features of the board for a given state, which can
be determined using genetic algorithm. The following
section gives a detailed overview of our implementation.

2 Genetic Algorithm

Genetic algorithms are search algorithms based on the
mechanics of natural selection and genetics as observed
in the biological world. They use both, “survival of the
fittest” and "mutation” (randomization) to robustly ex-
plore the best choice of weights.

2.1 Features

To determine the next move, all possible move are com-
pared using a utility function and the move resulting in
the highest utility is chosen. The utility function is a
weighted sum of different, state-dependent, human engi-
neered features. A ”good” choice of features therefore is
crucial in order to obtain a well-performing agent.

The current state is defined by the occupancy of the
board and the next Tetramino. One can also define ab-
stract state descriptors like the height of columns, holes,
wells and transitions. A hole is an empty cell with an
occupied cell above it. A well is a column whose adja-
cent columns are higher than it, and its depth is defined

as the difference of the height of well column and the
shorter adjacent column. Transitions are the number of
empty-occupied cell switches in the respective column or
row. The final set of features we used are:

1. Sum of height differences
columns.

between adjacent

Maximum height of a column.

Total number of cleared rows.

Whether the current move results in a loss.
Total number of holes.

Sum of depths of all wells in the game board.

N o ot e

Mean of the absolute difference between the height
of each column and the mean height

2.2 Training Algorithm Implementation

In order to find an optimal set of weights, several steps
are repeated iteratively: First, an initial population of
randomly drawn weight vectors from a uniform(0, 1) dis-
tribution is generated.

To produce the subsequent generations, we first choose
a parent in the following way: We calculate the sum
of scores of all members of the previous generation and
multiply it with a random number from a uniform(0,1)
distribution to define a threshold value. We then ran-
domly draw members from the previous generation and
check if their score crosses the threshold value. If it does,
we choose that member as as a parent. Else we reduce
this threshold and continue the search by drawing a dif-
ferent member from the population. In case no member
of the previous generation crosses the threshold, we re-
turn the member with the highest score in the previous
generation as the parent.

After selection two parents using the above method, we
use the single point crossing over heuristic to determine
the weights of the two children produced. In this heuris-
tic, a single crossover point on both parents’ weight se-
quence is selected. All weights beyond that point in the
parents’ weight sequence is swapped between the two
parent organisms to generate the two children. We used
a 0.6% crossing-over rate. The rate defines the probabil-
ity for the crossing over to happen. In case crossing over
does not happen, the parents chosen are directly passed
as children to the next generation.

Subsequently, each weight of the child can undergo muta-
tion with 1% probability. If a mutation occurs, the spe-



cific weight is multiplied with a uniformly drawn value
between 0.8 and 1.2.

2.3 Parallel Processing

Due to the randomness in the choice of next stone, each
game is different. In order to avoid ”overfitting”, i.e. a
set of weights merely performs well for a specific sequence
of stones, the score for each member is the average score
of 10 games. As these games are independent from each
other, they are played in parallel, using multi-threading.
Similarly, each member of the population has its own
set of independent feature weights and hence, they are
also evaluated leveraging multi-threading. This achieves
a speedup of roughly 10.82, e.g. given a population size
of 50, the multi-threaded version needs 7m53s per gener-
ation while the older version needed 85m19s.

2.4 Results

We analyze the results from 100 runs of the game us-
ing the weight vector @ shown right below, which were
derived training our best genetic algorithm for 200 gen-
erations with a population size of 40. The weights of the
features are ordered as in Section 2.1.

@ = [0.69, -0.60, 0.80,1.07,0.68, 1.13, 3.63]

Figure 1 gives us the distribution of the performance re-
sults from 100 iterations. We observe that while most
results are below 100,000 rows cleared, there are 10 iter-
ations where we clear more than 200,000 rows.

Metric Value
hline Average | 119,560
Median 82,706
Maximum 864,157
Minimum 101

Table 1: Performance of best weights over 100 iterations

Table 2 shows us that the while the minimum number of
rows cleared is 101, we clear a maximum of 864,157 rows.
The average number of rows cleared is 119,560 which is
cleary higher than the median of 82,706. This aberration
is due to our extremely well performing runs when the
sequence of incoming stones is very beneficial to our set
of weights.

Figure 2 shows that there is a linear relationship be-
tween the mean and the median of the 10 best results
of each generation during training. This means that we
don’t get random outliers of weights which give good
scores for very few members while all others perform
poorly. Instead we have a smooth development and in-
crease of the performance during training. Also, the
graph shows that the mean scores during training are
lower for population sizes of 15 and 25, and increases
significantly for population sizes greater than 40. The
performance tends to converge for population size 40, as

there isn’t any improvement with population size 100.
This means that the population size has to pass a cer-
tain threshold such that the random processes of crossing
over and mutation are likely to ”produce” significant im-
provements.

25

- N
o S

Frequency

5}

0 200000 400000

Results

600000 800000

Figure 1: Results from 100 iterations of the game

175000

150000 o o o
.
SR
125000 %
o0
s "
3 100000 ,‘ o InitPopulation
& .‘,,‘ o 150
3 % o3 250
= 75000 o 2 ® o 400
L 100.0
o !
50000 o
o
. ’ﬁ-
H
25000 .

0 25000 50000 75000 100000 125000 150000 175000 200000
MedianResult

Figure 2: Mean-Median plot of intermediate scores dur-
ing training for different population sizes.

3 Further Experiments
3.1 Additional Features

We tested out several other features, but discarded them
later as they did not improve results. They were:
1. Number of connected holes.

2. Difference between maximum and minimum col-
umn height.

3. Maximum depth of well.
4. Number of blocks currently present on the board.

5. Weighted number of blocks, where you penalize
blocks in proportion to the height at which it is
located.

6. Number of Horizontal transitions.

7. Number of Vertical transitions.



3.2 Other heuristics for crossing over

We experimented with some other heuristics for perform-
ing the crossing over of the two parents to generate the
child :

1. The child randomly picks the full set of weights of
one of its parents

2. The child’s weights are average of weights of the
parents

3. For each feature, the child randomly inherits the
weight from one of the parents

4. Generate a random number k, and the child takes
the first k weights from one parent and the rest
from the other

However, we got a maximum of 86,516 cleared rows
with these other heuristics and thus discarded them.
Graphs for analyzing performance of these heuristics can
be found in the appendix.

3.3 Particle Swarm Optimization (PSO)

PSO is a computational method that iteratively tries to
improve a candidate solution with respect to a given mea-
sure of quality. At each iteration, it keeps track of the
best feature weights for every population member, and
also for the entire population. We modify the weights
at each iteration, influenced by the best weights for that
member as well as for the entire population, using the ve-
locity vector for each feature, and update them in case a
personal best or global best set of weights is found(which
clears the most number of rows). This optimization di-
rects the movement of weights of the future generations
based on memory of best performing members of the
previous generations. This helps converge the current
genetic agent candidate towards the most optimal one
found so far.

3.4 Other Algorithms

Using a genetic algorithm is capable of finding a well-
performing solution but still heavily depends on the fea-
tures engineered by humans. Thus, we tested data-driven
algorithms in order to eliminate the necessity of human
feature engineering.

3.4.1 Q Learning

Q Learning is a kind of reinforcement learning, that does
not require a model of its environment. For each game
state (s), Q Learning maps all possible actions (a) to re-
wards Q(s,a). The Q function’s values for each pair (s, a)
is derived during training procedure, using the Bellman
equation [3]:

Q(s,a)=r +’yrrb:/1XQ(s',a')

Meaningly, the reward for taking action a in state s

is the sum of the initial reward of this action (r) and the
weighted reward of the next state s’. In order to get a Q
value for all actions in every state, during training time, a
random action is chosen with probability e = 0.4. Other-
wise, the greedy policy determines the action. The train-
ing is terminated when all of the Q-values converged.
This might include to have a decreasing learning and
random move picking rate (7 resp. €).
The Q-learning approach is therefore in need of a reward
function (r) but in contrast to the genetic algorithm ap-
proach this is very intuitive e.g. for Tetris, r = —1 if the
game has ended and r = 0 otherwise is sufficient, or for
CTB, r =1 if the ball was cought and » = —1 if the ball
passed the catcher (see chapter 4).

Therefore the Q learning method is capable of play-
ing any game without any a priori knowledge about the
environment, only terminal state games have to be as-
signed a "reward”. Nevertheless a lot of training iter-
ations are necessary until all of the Q values converged
and have been updated at least once. While this does
not pose a problem in case of small states and action
spaces, as in the CTB game with O(10?) possible pairs,
indeed the Q learning training procedure is infeasible in
case of large state spaces. The Tetris as characterized in
1 has 2209 = O(10%) states. Even if one training itera-
tion would take less than a nanosecond and the algorithm
would never revisit states updating every entry in the Q
matrix would require roughly 10? years. It can neverthe-
less be shown that the Q learning approach works in the
Tetris frame. For a simpler version of Tetris ! the Q val-
ues converged after 10000 iterations and afterwards the
agent clears an infinite number of rows. Thus, to solve
the ”standard” Tetris game with a Q-Learning approach,
the challenge is to narrow the state space dramatically
and reasonably.

For the purpose of shrinking the state-space several
approaches were tested. Most of our approaches resulted
in a too large loss of information and consequently to a
very bad performance of the agent (e.g. redefining the
game’s state as the top (two) rows of the board).

3.4.2 Auto Encoder

High-dimensional data can be converted to a lower-
dimensional representation by training a multilayer neu-
ral network. This network (see figure 3) is symmetric
with respect to the small central layer (whose output is
the encoded input). Therefore the first part of the net-
work encodes the data, while the second one decodes it
and the resulting error is used to optimize the networks’

IThe simpler Tetris game differs from the ”standard” Tetris game in matters of both the board size (3x3) and the set of Tetraminos

(2) used, in order to reduce the space-action-space.



weights ([1]). In the Tetris game an auto encoder can
be used to encode the field (state) and replace it by a
low-dimensional column vector.

FC(200) J

/’_{_“\

state ‘ Convolution |
old ‘ (3x3) |

FCi200)

FC(20) 1

ra Y
[ state |
\ new |
.

Figure 3: Auto Encoder - Architecture

To represent the Tetris board in a lower-dimensional
space the adjacent structure of every cell (e.g. holes)
could be important. Hence, the board is convoluted first
and the convoluted board is fed into the autoencoder
which consists of three fully connected layers, down-
sampling to a vector of size 20, and is trained using
batch-normalized stochastic gradient and subsequently
steepest gradient descent, to avoid getting stuck in a lo-
cal minimum (compare 4). For building and training the
network the encog framework [2] was deployed.

Auto Encoder in Genetic Algorithm

Instead of manual feature engineering the features could
be derived by learning a shrunk state representation, i.e.
by using the auto encoder’s state directly. We used our
CTB implementation to first verify this new general idea.
To perfectly perform in the CTB game (section ) merely
the distance between catcher and ball is necessary as a
state, a full state description is given by the distance
and a position of either the catcher or the ball (merely
x-coordinate regarded here). In theory the game’s inter-
nal state, i.e. two hot-encoded vectors containing the dis-
crete x-position of both catcher and ball, should be down-
sampled to this smallest possible state description. Un-
fortunately, applying an autoencoder to the CTB game
results in two values that are not separately dependent
on either the distance or position but contain a combi-
nation of both. Thus, even if the encoder’s output well
defines the game’s state, it can nevertheless not be used
as feature vector, since the agent’s decision should surely
not be affected by the absolute position of catcher/ball
in the CTB example. In general the previously described
problem arises as well when applied on the Tetris game.
Hence, the genetic agent trained with autoencoded fea-
tures did not perform well for the two games.

4 General Agent

Another goal of our project was to design the agents in a
general style such that they are not limited to only play-
ing Tetris, but can be easily deployed and tested on CTB
or any other game which is implemented in line with our
abstract (general) game class. The roadbloack here is
that we have not yet found an algorithm which can auto-
matically calculate reasonable set of features. Therefore
human ”feature engineering” will still be required.

MSE (Output vs Input)

0 50 100 150 200 250 300 350
Training epoch

Figure 4: Auto Encoder - Training errors

5 Discussion

Future improvements include making the genetic agent
more robust by looking one move ahead and factoring
that in to decide the best current move. Also, one could
try to find a state space representation suitable for
playing Tetris with the Q-Learning approach. Overall,
we are pretty satisfied with our results, especially
considering the amount of time and effort we invested
in exploring the Q-Learning and the Autoencoder
approach. We were able to scale our algorithm to use
big data, since the genetic algorithm has an inherent
structure for parallelization. Our implementation using
multithreading was able to execute 86 generations of the
genetic agent with a population size of 100 in about 5
hours using the 10 cores on the NSCC cluster achieving
a mean cleared rows of about 118,587.

The genetic algorithm and PSO optimization pa-
rameters required extensive tuning, and given the
limited time, we focused on tuning the heuristics for
crossing over and mutation rate, along with different
population sizes, since this helps in achieving a better
population in fewer generations. We also tried tuning
the weights of velocity and coefficients of influence of
the local and global best results for the population using
PSO. But this only led to marginal improvement in
results. The genetic algorithm evolves quite steadily, but
slowly in the solution space, while the PSO occasionally
gives good results. Hence, we thought of combining
the two so that any good set of weights in the solution
space obtained randomly could be converged upon. This
is evident of the fact that genetic algorithm tends to
localize to a suboptimal solution and exploit the solution
space, while PSO tends to explore it. A higher velocity
coefficient explores the search space more. So, the search
problem is essentially balancing between exploitation
and exploration, which could have been improved by
applying PSO on a fraction of the population. We
observe a large variability in the results, as is inherent
in mutation, selection threshold of parents and initial
set of random weights of the population and velocities
imparted to the features.



Appendix

Catch the Ball (CTB)

The Catch the Ball (CTB) game consists of two objects,
a ball and a catcher. In each turn the ball’s and catcher’s
horizontal position are randomly initialized. Then, the
ball is straight falling down from its starting position and
the player has to adapt the catcher’s horizontal position
(via 3 inputs: move left/right or stay) so that the ball is
"captured” (i.e. Tpail = Teatcher). The visual represen-
tation of the CTB game is shown in 5.

Figure 5: Test game - Catch the Ball.

In CTB the possible states are defined by the dis-
crete distance between catcher and ball, which results in
2widthpearq states. Combined with three actions (mov-
ing left, right or staying) we have 600 possible state-
action-pairs, assuming a game board with of 200. Here,
after roughly 10000 training games a well defined Q(s,a)

matrix is obtained resulting in a well-performing agent.

Further Diagrams

350000 Heuristic

e 00
300000

°

e 30
250000 )
200000

150000

BestResult

100000
50000

g g

15.0 25.0 40.0
InitPopulation

100.0

Figure 6: Comparison of initial population.

References

[1] G.E. Hinton* and R. R. Salakhutdinov. Reducing the
Dimensionality of Data with Neural Networks. Sci-
ence, 2006.

[2] J. Heaton. FEncog Machine Learning Framework.
Heaton Research, 2018.

[3] C. Watkins. Technical Note:
Academic Publishers, 1992.

Q-Learning. Kluwer



