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Abstract

Vector Packet Processing Technology, currently released under FD.io
is a framework for high-speed packet processing in user-space. VPP is
capable of implementing a full network stack, including L2, L3 function-
alities. Currently, it runs on top of DPDK used as input/output nodes in
addition to VPP packet processing.

1 Introduction

VPP follows a batch-wise packet processing paradigm. Scalar packet pro-
cessing involves each packet traversing the whole forwarding graph, but in VPP,
each node processes all the packets in a batch, which provides great performance
benefits. Not all packets follow the same path in a forwarding graph and hence,
the vectors will be different form node to node.

The input nodes produce a vector of packets to process, the graph node dis-
patcher pushes the vector through the different processing nodes in the directed
graph, subdividing and redistributing the packets as required, until the original
vector has been completely processed. VPP is written in C, and its sources
comprise a set of low-level libraries for realizing custom packet processing appli-
cations as well as a set of high-level libraries implementing a specific processing
task. The main core and user-defined plugins, which define additional function-
alities, form a forwarding graph, illustrated in Fig. 1 describing the possible
paths a packet can follow during its processing. A generalized processing path
is shown in Fig. 2

The three main goals of VPP are :

• minimize the instruction cache misses

• minimize the data cache misses using data prefetching

• increase the instructions per cycle that the CPU can fetch

VPP consists of a set of nodes, also illustrated in 1 namely :

• Input Nodes : produce data from a network driver for consumption. These
are present at the start of the graph, they are responsible for generating
packets from the NIC and push them into rest of the graph, i.e. abstract
the NIC and manage an initial vector of packets. e.g. dpdk-input in Fig.
1 polls packets from the NIC and pushes them to forwarding graph.
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Figure 1: VPP Forwarding Graph

• Internal nodes : These are traversed after an explicit call by an input
node or another internal node. These get their packets from another
source and are responsible for processing incoming data in the graph. e.g.
ip4-lookup, ip6-lookup in Fig. 1, which are responsible for looking up
the routing path corresponding to dest. IP address is called by another
internal node, ip4-input.

• Process nodes : This exposes a thread-like behavior, in which the node’s
callback routine can be suspended and reanimated based on events or a
timer. This is useful for sending periodic notifications or polling some
data that’s managed by another node. e.g. modifying forwarding tables.
So long as the table-builder leaves the forwarding tables in a valid state,
one can suspend the table builder to avoid dropping packets as a result of
control-plane activity.

As illustrated in 2, the graph node dispatcher pushes the work vector through
the directed graph, subdividing it as needed, until the original work vector has
been completely processed. At that point, the process recurs. A vector of
packets briefly encounter the following nodes, as shown in Fig. 2. This shows
an incoming vector of different L2, L3(IPv4, IPv6) packets, polled by the input
node, dpdk-input. The vector is pushed to the next input node, which parses
their headers, and passes them to the respective internal nodes, like ip4-input

for IPv4 packets. Now, a vector of IPv4 packets are formed post redistribution
for processing. The processed packets are then assembled after processing for
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Figure 2: Packet Processing Path

output to NIC.

2 Working

First, a batch of packets is polled from the DPDK interface, after which the en-
tire batch is processed. Poll-mode is quite common as it increases the processing
throughput in high traffic conditions (but requires 100% CPU usage regardless
of the traffic load conditions), which explains the full CPU utilization of 100%
by each of the worker polling threads, witnessed via htop command.

VPP can work in two modes, as per 12:

• Single-thread : In this case, only one main thread handles both packet pro-
cessing and other management functions (Command-Line Interface (CLI),
API, stats). This is the default setup.

• Multi-thread with worker threads : In this mode, the main threads han-
dles management functions(debug CLI, API, stats collection) and one or
more worker threads handle packet processing from input to output of
the packet. Each worker thread polls input queues on subset of inter-
faces. With RSS (Receive Side Scaling) enabled, multiple threads
can service one physical interface (RSS function on NIC distributes traffic
between different queues which are serviced by different worker threads
through hash functions over 5-tuple{IP address, L4 protocol and ports}).

The instruction cache gets warm with the instructions from a single graph
node, and consequently loads the next nodes in order to process the entire
vector of packets from input to output interface. Sufficiently long packet pro-
cessing paths can cause significant i-cache misses. On the other hand, the data
cache gets warm with first few packets from the vector in a multi-loop setup,
prefetching the next set of packets into the d-cache, while processing the current
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set. These caches work using the ‘Least Recently Used ‘ policy. A step-by-step
demonstration can be found in 10.

2.1 Optimizations

• Multi-loop implementation : N packets are simultaneously processed in
parallel, since computations on packets i, i + 1, ., i + N − 1 , are typically
independent of one another. This allows CPU pipelines to be persistently
full and delays due to cache misses are amortized among these N packets
instead of one. VPP uses a quad loop implementation (N = 4)

• Data prefetching : Once the node is invoked, it is posible to prefetch into
the data cache, the i+1th packet while procesing the ith packet. It can be
combined with the above multi-loop implementation, to prefetch packets
from i + 1 to i + N , while processing packets i − N through i. There is
no prefetching for the first batch of N packets, while there is nothing to
prefetch for the last batch. However, these effects are negligible over a
large vector size, as in VPP where the default value is 256.

• Cisco Express Forwarding [3]: VPP maintains a Forwarding Information
Base and the adjacency table. This is used to make IP destination prefix-
based switching decisions. The FIB maintains next-hop address informa-
tion based on the information in the IP routing table. Because there is a
one-to-one correlation between FIB entries and routing table entries, the
FIB contains all known routes and eliminates the need for route cache
maintenance. Any change in routing table is updated in the FIB. The
FIB is specific to an interface and maintained separately for each
interface.
Instead of carrying the plain next hop’s IP address from the routing table
over into the FIB, each entry in the FIB that represents a destination
prefix can instead contain a pointer toward the particular entry in the
adjacency table that stores the appropriate rewrite information: Layer 2
frame header and egress interface indication. The adjacency table main-
tains Layer 2 next-hop addresses for all FIB entries.

The FIB contains all known destination prefixes from the routing table,
plus additional specific entries, organized as mtrie or a multiway prefix tree,
detailed in 4. Generally, to identify the outbound interface, we lookup the
dest. IP from the trie. Traditionally, tries are used only for routing, and
distinguish only between leaf and node elements. The basic building block
of all Mtrie plus nodes is an oppointer including an address(preferably,
that of the next node) and an opcode. The opcode dictates the action
the switch has to take on the packet label to select the next oppointer
node. If it points to an 8-bit termination leaf, the lookup is terminated.
High speeds are achieved by the multi-pipelined threads of the MTrie Plus
engine.

3 Goal

We are trying to develop an overall understanding of the working of VPP and
evaluate the overall performance of its batch-packet-processing heuristic. In ad-
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Figure 3: Experimental Setup

dition, we are trying to analyze its latency, throughput, cache performance,
performance scale-up with increasing cores, amidst other statistics. This will
help us efficiently allocate resources to the switch for different use cases, and
maximize its performance under different scenarios.

4 Evaluation

4.1 Setup

We connect two machines, one acting as server running VPP and another
acting as the Traffic generator and sink (packet generator and receiver) as
shown above in Fig. 3. Both of the are equipped with dual-port NICs capable of
handling 10 Gbps traffic and the corresponding ports of the two NICs on either
machine are connected via LAN cables. One port on client NIC is assigned to
traffic generation and the other one for RX measurements.

4.2 Traffic Load generation

We generate different kinds of L3 traffic using the MoonGen packet generator.
The first one simply involves sending packets sequentially in a given IP range
(round-robin fashion). The gaps between the destination IP addresses are var-
ied. Second, we generate packets from a Gaussian distribution with mean as
the midpoint of the IP address range, with varying variance.

This involves IPv4 processing, where all traffic follows a single path in the
VPP graph.

4.3 Setup parameters

VPP version 18.04 stable
DPDK version 18.02.1 stable

CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
Logical cores 48

NIC 10-Gigabit X540-AT2
Packet Generator MoonGen

Traffic load 10 Gbps
Packets UDP

Packet size 128 bytes
L1 data cache 32 KB

L1 instruction cache 32 KB
LLC (L3) 30720 KB
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4.4 Vector Size/No. of packets in a vector

We can configure the maximum vector size at compile time, by modifying
VLIB FRAME SIZE, in vpp/src/vlib/node.h but the actual vector size depends
on the processing task. This can be measured by looking up $vppctl show run.
The miminimum specified size needs to be 4, since VPP works on a quad-loop
implementation, hence fetches 4 packets to process at once.

A good indicator of CPU load is ‘average vectors/node‘, which shows how
many packets are processed in a batch, as mentioned in 5. A bigger number
means VPP is more busy but also more efficient. As we see below in Fig. 4, if
VPP is not loaded it will likely poll so fast that it will just get one or few packets
from the RX queue. And as load goes up, VPP will have more work, so it will
poll less frequently, and that will result in more packets waiting in RX queue.
The decrease in number of packets in a batch is not linear with the increase
in worker threads, because it is dependent on polling rate of the thread(which
will increase now, thread being less loaded) and traffic load(which is fixed at 10
Gbps here). A similar analysis has been done in 8.

Figure 4: No. of packets in Vector Vs. No. of workers/cores
BLUE : Uniform, RED : Gaussian

No. of flows : 256

We see in Fig. 4 that in case of 2 worker threads, Gaussian traffic load
incurs a higher batch size owing to the fact that most packets belong to a narrow
dest. IP range compared to uniform flow of packets. Hence, a smaller set of
same instructions need to be executed for a larger batch, leading to a larger
aggregation ensuring efficient execution, in terms of higher cache hit rates, etc.

We now try and plot the vector size as a function of the number of entries in
the routing table in Fig. 5. We see that the vector size for uniform traffic load
is almost the same for different routing table sizes, and we see corresponding
larger vector sizes for the Gaussian traffic load, as explained above.

6



Figure 5: No. of packets in Vector Vs. Number of routing entries
BLUE : Uniform, RED : Gaussian

No. of workers : 2

Figure 6: No. of packets in Vector Vs. Fraction of Max Traffic load (10Gbps)
No. of workers : 2, Flow : Uniform

As seen in Fig. 6, the input traffic load when decreased, i.e., lesser no. of
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packets sent to the switch per unit time, the threads being less loaded, poll in
lesser packets into a vector. More packets result in more efficient execution, so
number of clock cycles/packet will go down. When “vector size” goes up close
to VLIB FRAME SIZE, we observe RX queue tail drops.

4.5 Instructions per Packet/Cycles Per Packet

The number of cycles per instruction helps probe into the instruction paralleli-
sation capabilities of the framework, along with per-packet processing metric
like instructions per packet. A combination of these two parameters give us the
number of clocks per packet.

Figure 7: Cycles Per Packet Vs. No. of entries in routing table
BLUE : Uniform, RED : Gaussian

No. of workers : 2, Max Vector Size : 256

Taking inspiration for 7 and 11, which claims VPP’s success in reduced CPP,
we now focus on the ip4-lookup node in the forwarding graph responsible for
performing the lookup for the packet according to its dest. IP address. We plot
the cycles for packet for different number of entries in the routing table in Fig.
7.

We see that the number of cycles per packet increases as we increase the
number of routing entries. This is consistent with the fact that as the number
of routing entries increase, to lookup the corresponding route for dest. IP prefix
takes longer time, to search in the routing table, in the case of uniform traffic
flow. However, for the Gaussian traffic load, we see that the cycles per packet
is almost the same, at roughly 26.
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4.6 Number of Entries/Routing table size

We forward packets at the maximum throughput rate of 10 Gbps and record the
forwarding rate observed at the RX side after the VPP processing. We do this as
a function of the number of routing rules added to VPP. The operation is more
expensive for larger packets though VPP only parses through and processes the
packet headers, because the entire packet has to be prefetched and loaded onto
the data cache for processing.

Figure 8: RX Throughput in Mpps Vs No. of routing entries;
No. of workers : 2, Max Vector Size : 256

BLUE : Uniform, RED : Gaussian

We observe almost no change in the RX throughput as a function of the
number of routing rules, in both Fig. 8 and 11 owing to the fact that VPP is
able to store the routing instructions for the vectors of packets, in a node that
fits into the i-cache, and the data structure employed for such storing of rules is
space-efficient so as to avoid significant i-cache misses. This agrees with VPP’s
claim in 6.

For the Gaussian traffic load, RX throughput is greater than Uniform owing
to the fact that there are relatively packets from a smaller IP range in the former
case. Hence, the i-cache can sustain with the same set of routing instructions
for those packets, without significant misses, implying lesser processing time.

As depicted in Fig. 7, the cycles per packet increase for increase in size of the
routing table, without any decline in throughput as witnessed in Fig. 8 and 11.
However, it is only for the node ip4-lookup. The increase in CPP for this node
is compensated by a decrease for other nodes in the processing path, notably
dpdk-input(which polls packets to form vectors) and other output nodes. This
is shown as part of experiments in Fig. 9 and 10
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Figure 9: Runtime statistics
No. of workers : 2, Max Vector Size : 256, Routing table size : 4096

Figure 10: Runtime statistics
No. of workers : 2, Max Vector Size : 256, Routing table size : 16384

Figure 11: RX Throughput in Mbps Vs No. of routing entries;
No. of workers : 2, Max Vector Size : 256

BLUE : Uniform, RED : Gaussian

4.7 No. of cores

We record the performance scaling up of VPP with the increase in the number of
cores, i.e., worker threads, where each worker thread polls and collects packets
separately at RX.

We observe in both Fig. 12 and Fig. 13 that the RX throughput sharply
increases from 1 core to 2 cores and then there is no noticeable increase in
performance, i.e. it somewhat attains saturation. The trend is same for both
the Gaussian and uniform traffic load. For example, the RX throughputs for
Uniform flow are 7.27 Mpps and 7.33 Mpps for 4096, 256 entries in the routing
table respectively, showing barely any difference.
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We also notice the same trend when we increase the RX-queues, since VPP
can now make use of Receiver Side Scaling to handle packets faster, leading to
enhanced RX throughput rates.

Figure 12: RX throughput(Mpps) Vs No. of cores/worker threads
BLUE : Gaussian, RED : Uniform

No. of flows : 256, Max Vector Size : 256

Figure 13: RX throughput(Mpps) Vs No. of cores/worker threads
BLUE : Gaussian, RED : Uniform

No. of flows : 4096, Max Vector Size : 256
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4.8 Cache Performance

We also compute the miss rates in the L1 instruction cache and the LLC cache
to measure the benefits of vector processing.

Figure 14: LLC(L3) Cache miss rate vs. Vector Size
BLUE : Uniform, RED : Gaussian

For an increasing vector size, the data cache miss rate may vary, LLC miss
rate reflects changes in both the i-cache miss rate and d-cache miss rate. How-
ever, as long as the vector size is lesser than 256, d-cache misses are rare
since L1-d cache is of 32 KB and so no. of 128 byte packets that fit would
be 32×1024

128 = 256 packets.

The trend in Fig. 14 is because it has to frequently load a different set
of routing instructions for different vectors, which change frequently when the
vector size is small. This overflows the i-cache in a smaller amount of time
and leads to more i-cache misses per unit time. We accordingly observe an
anticipated gentle fall in the LLC miss rate. However, we also observe a very
small unexpected rise in the LLC miss rate with increasing vector size from
4 till 16 in Fig. 14. Overall, we observe no significant changes in cache miss
rate. However, this can be misleading if L2, L3 cache miss rates are significant
compared to L1 cache misses and the i-cache is large enough to hold several
instruction nodes for different vectors one after the other.

Now, we generate traffic with different leading prefixes, so that VPP can’t
make use of the fast lookup using mtries. We generate traffic sequentially with
little spatial similarity between consecutive dest. IP addresses. Now, we try to
probe the i-cache miss rate as a function of the number of flows/rules. In Fig,
15, we plot the explicit i-cache miss rate as a function of different number of
flow rules, keeping the max vector size as 64, so that in all cases, the actual
number of packets in a vector is forced to be 64.

We see that the i-cache miss rate increases and rises sharply from 16 to
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256 flows as expected, and peaks at 256, but however, goes down again from
512 routing entries till 4096. Since as we keep on adding more rules, the dest.
IP addresses become spatially closer and at some point, for more rules, there
are no longer additional tries required for storing routing addresses, and hence
there is no significant cache miss rate. However for lesser no. of rules till
256, we observe the L1 i-cache miss rate to be increasing so as to fetch on tries
corresponding to the spatially distant routing prefixes of different packets, which
explains significant L1 i-cache misses.

Figure 15: L1 i-cache miss rate Vs. No. of flows
Actual Vector size : 64

Now, we try to keep the routing table size fixed to 256 entries, with the
load being generated as explained above, but with varying vector sizes. Since
data cache misses are negligible, we expect the trend in Fig. 14 to be somewhat
similar to Fig. 16. This is not completely true, since LLC cache miss rate reflects
L2 and L3 cache misses as well, so 14 will not be completely representative of
16 as we see above. The i-cache miss rate should be decreasing since smaller
vectors are processed fast and so different instructions will be loaded in lesser
time, leading to more overflows and consequent i-cache misses in unit time.
This might be due to the fact that the i-cache can fit in several instruction
nodes for processing vectors one after the other without overflowing and apart
from ip4-lookup, there are other nodes, which might have a significant role in
packet processing, and are dependent upon the size of the vector, whose miss
rates are significant.

13



Figure 16: L1 i-cache miss rate Vs. Vector Size
Routing table size : 256, Workers : 2

4.9 Latency

The latency of individual packets are higher in comparison to scalar packet-
processing heuristics, as a packet will be emitted to the output interface only
after the entire vector of packets has been processed. Here, we plot the latencies
of packets, corresponding to increasing number of routing entries.

As we see in Fig. 17, the overall latencies per packet of the uniform traffic
load generation is more than that of the Gaussian traffic load, owing to the fact
that the latter contains dest. IP addresses from a smaller range, and requires
lesser pre-processing time, since the same instruction ip4-lookup node can be
reused(if in i-cache) for routing the packets to dest. IP addresses, whereas for
the uniform traffic load, a set of routing instructions for each vector has to be
fetched in most of the cases, since the routing addresses(dest. IP address) vary
over a large range.

The uniform traffic load shows an overall increasing trend, barring the peak
at 1024 routing entries, since we expect that the per-packet processing rate
increases, since each packet has a distinct IP address, and hence for each vector
of packets, a different set of instructions correspond to routing of such packets,
which has to fetched while searching amidst a larger set of rules when routing
table increases in size. For the Gaussian case, the latencies are almost the same,
barring the dip at 4096 entries, since the same instruction node can be used for
many vectors of packets, which can be found in the i-cache more often, not
having to lookup among the increasing number of rules in the routing table.
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Figure 17: Latency (per packet) Vs. No. of routing entries
BLUE : Uniform, RED : Gaussian
Max Vector size : 256, Workers : 2

4.10 Drawbacks

• VPP crashes frequently when trying to add more than 16384 flow rules
(IP entries) and ARP entries.

• We do not have any explicit control on the Cache parameters or the Actual
vector size.

• MoonGen has an inherent rate control, and hence it tries to send no
more packets to the switch than can be handled in case of smaller packet
sizes like 64 bytes. This is mentioned in Rate Control in MoonGen.

5 Conclusion

We have tried to explore the working and various optimizations of VPP and
have developed a fair understanding of the same. We see that through batch
processing in a graph, VPP amortizes the processing overhead as we see that
it achieves near line rate with very insignificant decline in throughput, with
increase in number of routing table entries, that too only with 2 workers/2
cores. The performance also scales quite well with increase in the number of
cores, besides being capable of dividing workload among multiple RX queues
using RSS.

The key to its performance being it increases both data cache hit rate
(with prefetching) and instruction cache hit rate (inherently, since the
same node functions are repeated over packets in the batch), as well as increasing
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the processor IPC (using multi-loop). We see that its efficient data structures
for forwarding enables high-speed packet processing upto a large routing table,
and the performance is scalable with more resources, like no. of cores and RX
queues.

VPP also adjusts the vector size accordingly so as to provide the best per-
formance, and hence we see different scenarios, where vectors are formed and
redistributed according to polling rate and type of load and packet-processing.
The Cycles Per Packet is also minimized overall, by amortizing extra costs over
a larger number of packets. This combined with relatively low latencies is wit-
nessed(given that packets are processed in batches, overall latency increases for
first few packets in a vector since they are transmitted only after processing the
entire vector). This makes VPP a good choice for high-speed switching.

We have not been able to accurately evaluate the cache performance, since
we were not quite sure about the heurisitic of loading of nodes in i-cache for
processing of packets. We realized that the default i-cache is too big, 32 KB,
given the optimizations that VPP uses for storing even very large routing tables;
and in order to significantly overflow the i-cache, we needed a thorough mixture
of a large number of different packets, so as to load every node corresponding
to a processing a variety of packets. We needed a lot of experiments to narrow
down upon this fact. In all experiments in cache, we have noted that VPP
incurs a significantly lower cache miss rate, even when the routing table size is
quite large.
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