
Relevant app prediction from app details

Arijit Pramanik

Abstract. We want to give the user the list of most relevant apps corresponding to

his preferences, extracted from a set of keywords.

1. Libraries in Python

We require gensim and spaCy libraries in python for NLP. Refer to these site for an

intuition :

https://elitedatascience.com/python-nlp-libraries

2. Approaches

2.1. Approach 1 : Using scikit-learn One-vs-Rest classifier

• Label each of the 400 descriptions by the category of the app. This becomes a

classification task now

• This will be a multiclass multilabel classification. Use the keywords of the query to

try and predict the label of those keywords post training on the descriptive chunk

of words

• This will give poor results, since categories are 36, whereas training examples are

400, with some categories having barely 2-3 examples to train.

2.2. Approach 2 : Train on the chunk using gensim

• Use NLTK library in python to download Brown Corpus, which is a general

corpus of sentences for training, covering a wide range of words. We may use this

to build our vocabulary

• A list of descriptions for each app is used for training, which form a list of

documents. Then we use the inbuilt class of docsim Similarity to calculate the

similarities.

• We may also use a word2vec model, which converts this list of documents into a

vector space with a desired number of features and other parameters. Then we can

use inbuilt functions for calculating similarity among words, (for each document,

take the cbow mean of each of the word vectors, representative of the document

and use this to calculate the silimarity between the keywords and each document

Winter Internship 2

• Instead, we can use doc2vec for representing each of the documents, and then use

the inbuilt library functions to carry out a comparison.

2.3. Approach 3 : Using spaCy to leverage industrial NLP training

• So, we use the ’en’ model of spaCy and convert the list of documents and the list

of keywords to relevant vector representations.

• Using the inbuilt similarity model, caclulate similarity scores between the specified

keywords and each of the documents

3. Drawing Inference From a Bayesian Network

3.1. Building the Model

• Use a python driver for neo4j for connecting to the graph database hosted on

the server

• The model has been built intuitively and attached herewith in BayesianNetwork.pdf

• Each node in neo4j has an attached name, flag to distinguish between discrete

and boolean variables, parent nodes in-order of appearance, boundaries of

each bucket for discrete variables and boolean values in case of boolean variables,

probabilities of each value of the random variable associated with the node, and

units of the respective quantity

NOTE : Probabilites are specified herewith as prob 0, prob 1 and so on for each

value of the random variable in [0, 1,]

3.2. Verifying the correctness of the Model with careful insertions and modifications

• You should follow the neo4j syntax for creating a node with desired label and

properties with CREATE command

• You can modify or add new properties to a node by using its labels and the SET

command with MATCH

• Use get nodes(), get relations() and verify model() to see the nodes,

relations and verify whether the model is consistent with the CPDs specified

3.3. Drawing the inference

• Inferences are specified as variables which you want to infer, given the evidence,

i.e., all observed variables are specified in the evidence with appropriate values in

their range reflecting the appropriate buckets of values.

• Inference Query returns the probability of the unobserved variables conditioned on

the values of the given variables.

